НЕФТЕГАЗОМАТЕРИНСКИЕ ОТЛОЖЕНИЯ – ФИЗИКО-ХИМИЧЕСКАЯ ЛОВУШКА ДЛЯ УГЛЕВОДОРОДОВ НА ЭТАПАХ НЕФТЕГАЗОГЕНЕРАЦИИ

А.Н. Дмитриевский¹, Н.А Скибицкая¹, А.А. Прибылов², Л.А. Зекель³, Е.Г. Доманова¹, Т.А. Пуго¹, В.А. Кузьмин¹, О.П. Яковлева¹, М.Н.Большаков¹, О.О. Марутян¹
1 – ИПНГ РАН, 2 – ИФХЭ РАН, 3 – ИНХС РАН
e-mail: skibitchka@mail.ru

Стадии преобразования органического вещества (ОВ) в нефтегазоматеринской матрице, как карбонатной, так и терригенной, определяют его фазовое и химическое состояние не только на этапе химического старения до керогена через процессы конденсации и поликонденсации, но и на этапе химической (восстановительной, термической – при наличии таковой, радиационной и др.) деструкции керогена до жидких углеводородов нефтяного ряда. Сформированная на стадиях седиментогенеза и раннего диагенеза породообразующая матрица по своей природе является неоднородным минерально-органическим природным образованием не только на уровне макро-, но и микрообъемов. Исследованиями катагенетических процессов взаимосвязанных преобразований органического вещества и породообразующей матрицы доказано, что процессы нефтегенерации не охватывают одновременно весь ее объем, а проявляются неоднородно, очагово, как на уровне микро-, так и макрообъемов [1].

Так, если в одних карбонатных нефтегазоматеринских микрообъемах только зарождаются начальные коллоидизированные очаги микритизации и созревания керогена в объеме первичной карбонатно-органической матрицы (рис. 1), то в других более развитых очагах уже значительно большая часть матрицы охвачена процессами микритизации, выхода керогена в самостоятельную фазу и формирования микрокристаллов на базе микритовых частиц, постепенно очищающихся от продуктов последовательного преобразования керогена в асфальтены – в тяжелые смолы и твердые парафины – в осмоленные и маслянистые компоненты (рис. 2).

То есть процесс перекристаллизации карбонатной нефтегазоматеринской матрицы – процесс формирования вторичных крупнокристаллических морфоструктур в микроочагах первичных карбонатных нефтегазоматеринских отложений проходит взаимосвязанно с процессом нефтегенерации – процессом постепенного преобразования керогена до жидких нефтяных углеводородов.

Необходимо отметить, что процесс преобразования органического вещества (OB) до керогена сопровождается начальной стадией газогенерации – сбросом низкомолеку-

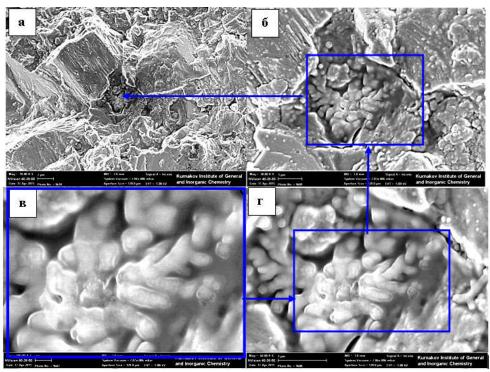


Рис. 1 (а, б, в, г). Начальные стадии процесса микритизации насыщенной ОВ первичной карбонатноорганической полимерной матрицы в образце 4/18, скв. № 210, инт. отбора 3740–3748.1 м, Вуктыльское ГКМ, C_1s_1 . Увел. 1000^x , 30000^x , 100000^x , 200000^x

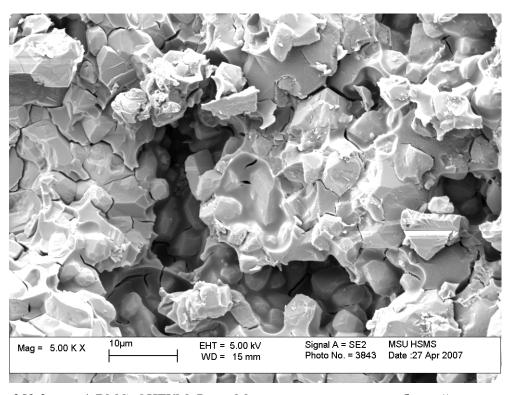


Рис. 2. Обр. 359-3, скв. 1-ВМС, ОНГКМ, P_1 sm. Микритовые частицы в набухшей в углеводородах коллоидной массе керогеноподобного полимера и смоло-асфальтеновых битумоидов, более крупные поровые объемы заполнены высоковязкой нефтью и газом. Фотография в РЭМ. Увел. 5000^x

лярных углеводородных (в основном СН₄) и неуглеводородных (CO₂, N, H₂S) производных в процессе конденсации и поликонденсации ОВ, то есть генерацией «сухого» газа. Процесс преобразования керогена до асфальтенов, тяжелых смол, твердых парафинов сопровождается, преимущественно, сбросом этан-бутан-пропановых газообразных углеводородов, то есть генерацией «жирного газа».

По мере нано- и микроочаговой химической деструкции керогена в его объеме в асфальтены, тяжелые смолы и дальнейшего последовательного преобразования первичных тяжелых битуминозных компонентов незрелой матричной нефти в легкие смолы, масла и более легкие углеводороды нефтяного ряда, так называемые органические нанопоры постепенно разрастаются и переходят в органические микропоры, центральная часть которых будет заполняться все более легкими углеводородными компонентами сингенетичной нефти. При этом периферийная часть органических пор, по мере приближения к еще не преобразованной части керогеновой матрицы, заполнена все более и более тяжелыми битуминозными компонентам вплоть до асфальтенов.

Очаговость процессов катагенетического преобразования органического вещества и вмещающей ОВ как карбонатной, так и терригенной матрицы определяет также и очаговость процессов нефтегазогенерации в нефтегазоматеринских отложениях месторождений на уровне их микрообъемов (рис. 3). Если в крупнопоровых крупнокристаллических объемах матрицы, формирующихся на завершающих стадиях перекристаллизации, емкостные объемы уже заполнены жидкой сингенетичной нефтью, то субкапиллярнопоровые емкостные объемы в комках и сгустках микритизированной матрицы еще заполнены керогеном или битуминозными продуктами последовательного преобразования керогена, а реликтовые «останцы» слабопреобразованной матрицы еще не достигли стадии микритизации их первичных морфоструктур.

Закономерность изменения сорбционных свойств органического вещества по отношению к генерируемым углеводородам на этапах последовательного преобразования OB

На каждом этапе преобразования органического вещества до керогена и далее до битуминозных компонентов (асфальтенов, смол, масел, твердых парафинов) и углеводородов нефтяного ряда формируются группы битумоидов и соответствующие им группы отгенерированных углеводородов. Классическое представление о миграции углеводородов из нефтегазоматеринских толщ допускает перемещение углеводородов, миграцию их не только на уровне самих толщ, но и региональную. Однако, при этом не

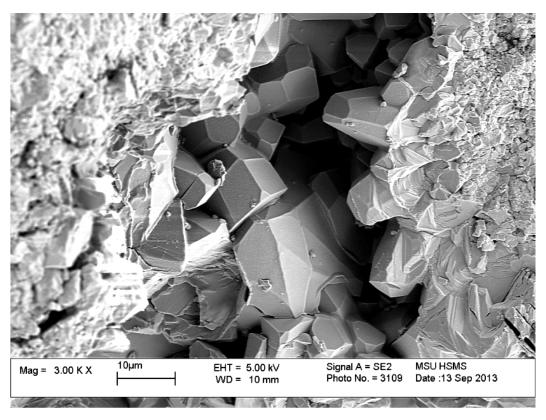


Рис. 3. Обр. 1/112(1), Димитровское ГНМ, скв. № 102 (глубина 2582,04 м), Р₁агт. Известняк водорослевый комковатый с интракластами. Форменные элементы (комки и сгустки) сцементированы яснокристаллическим кальцитом (спаритом). Крупные поры между крупнокристаллическим кальцитом заполнены жидкими углеводородами нефтяного ряда с растворенным в них газом и высокомолекулярными компонентами. Возможно наличие свободного газа в центральной части поровых объемов. Увел. 3000^х

учитываются удерживающие, сорбционные свойства самих высокомолекулярных продуктов преобразования органического вещества по отношению к отгенерированным газообразным и жидким углеводородам [2–5].

В табл. 2 приведены значения коэффициента удельной сорбции (поглощения) компонентами битумоидов из образцов пород Оренбургского НГКМ индивидуальных газов из смеси, моделирующей (без H_2S) состав природного газа месторождения, представленный в табл. 1.

Таблица 1 Состав природного газа ОНГКМ, использованный в опытах по сорбции газа битумоидами

CH ₄	C_2	Н6	C_3H_8	Норм-С ₄ Н ₁₀	Изо-С ₄ Н ₁₀	CO_2	N_2
86,62	2 3,	59	1,70	0,513	0,275	1,02	6,28

Таблица 2 Значения коэффициента удельной сорбции (поглощения) индивидуальных газов из смеси при 30 0 C (303 K) и 70 0 C (343 K), нм 3 /т·атм

Компонент	Асфальтены		Смолы		Масла		Парафины	
газа	$30~^{0}{\rm C}$	70 °C	$30~^{0}\mathrm{C}$	70 °C	$30~^{0}\mathrm{C}$	70 °C	30 °C	70 °C
Метан	0,511	0,470	0,573	0,570	0,717	0,703	0,947	0,932
Этан	0,892	0,774	1,545	0,98	1,89	1,48	2,47	2,15
Пропан	2,764	1,382	5,76	3,61	7,7	4,69	10,57	7,62
Бутан	4,422	1,989	11,9	4,26	15,1	8,86	20,2	11,7
Двуокись	0,829	0,663	1,32	0,851	1,05	0,9	1,17	1,075
углерода								
Азот	0,249	0,231	0,392	0,333	0,456	0,371	0,513	0,488

В табл. 3 приведены данные по сорбции (г/г и нм³/т) природного газа (см. табл. 1) образцами керогена и асфальтена из карбонатных нефтегазоматеринских газоконденсатных отложений Оренбургского НГКМ в широком интервале изменения давления.

Таблица 3 Сорбция природного газа (табл. 1) образцами керогена и асфальтена из карбонатных нефтегазоматеринских газоконденсатных отложений Оренбургского НГКМ, г/г и нм³/т

	Асфальтен		Кероген			
Р, ата	а, г/г	Hm^3/T	Р, ата	а, г/г	${ m HM}^3/{ m T}$	
7,31	0,00399	5,586				
23,63	0,01024	14,336	9,7	0,00135	1,89	
39	0,01592	22,288	21	0,00266	3,724	
55,5	0,02328	32,592	36	0,0041	5,74	
82,25	0,03289	46,046	54	0,00598	8,372	
99	0,03877	54,278	79,9	0,00857	11,998	
122,25	0,04683	65,562	103,2	0,01089	15,246	
143,19	0,05401	75,614	132	0,01364	19,096	
161	0,06019	86,266	160,3	0,01613	22,582	
179,19	0,06589	92,246	195	0,01908	26,712	
197,06	0,06997	97,958	241	0,02158	30,212	
210,38	0,07324	102,536	279,5	0,02363	33,082	
211,88	0,07354	102,956	318	0,0249	34,86	
226,63	0,07741	106,557	365,4	0,02614	36,596	
246,31	0,08093	113,302	398,5	0,02665	37,31	

Поскольку газовые компоненты сорбируются битумоидами в различной степени (табл. 4), состав связанного газа отличен от состава равновесного. Связанный

битумоидами газ по сравнению с составом равновесного газа обеднен метаном и существенно обогащен тяжелыми компонентами — этаном, пропаном и бутаном (рис. 4). Содержания этана, пропана и бутана в газе, сорбированном высокомолекулярными компонентами, выше, чем в равновесной газовой фазе или в свободном поровом пространстве (применительно к пластовым условиям). Например, содержание этана, пропана и бутана в сорбированном при 30 °C смолами газе, соответственно, в 1,5; 5,6 и 11,5 раз превышает их содержание в равновесной газовой фазе. Аналогичные значения для парафинов составляют, соответственно, 1,93; 8,23 и 15,7 раз. Напротив, содержание газов СО₂ и N₂ в газе, связанном компонентами битумоидов, ниже, чем в равновесном.

Так при P=250 атм и T=30°C, поглощение асфальтенами метана составляет 130 $\,\mathrm{m}^3/\mathrm{T}$, пропана — около 1000 $\,\mathrm{m}^3/\mathrm{T}$, бутана — более 1500 $\,\mathrm{m}^3/\mathrm{T}$ (см. рис. 4). Чрезвычайно высокой сорбционной и растворяющей способностью по отношению к гептану обладают парафины и масла (до 2,5 т и до 1,8 т, соответственно). При этом наиболее низкой газосорбционной способностью 27 $\,\mathrm{m}^3/\mathrm{T}$ отличается кероген (см. рис. 4).

Таблица 4
Сопоставление объемной равновесной концентрации компонентов природного газа в свободном поровом пространстве и в веществе битумоидов, нм³/м³, при P=100 атм

Компонент битумоида	T, ⁰ C	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	CO ₂	N ₂
Асфальтены	30	47,6	3,62	5,08	3,94	0,96	1,76
" "	70	46,0	3,14	2,65	1,77	0,77	1,64
Смолы	30	48,1	5,38	9,50	9,12	1,31	2,39
" "	70	47,9	3,40	5,96	3,26	0,84	2,03
Парафины	30	63,9	6,92	14,0	12,45	0,93	2,51
" "	70	62,11	6,02	10,1	7,21	0,86	2,39
Свободное поровое пространство	_	86,6	3,59	1,7	0,79	1,02	6,28

Высокая сорбционная активность битумоидных компонентов по отношению к компонентам природного газа определяет все более высокую связанность газа и его все более низкую способность к миграции на стадиях преобразования ОВ от керогена до твердых парафинов и масел.

Что же происходит с природным газом, когда битумоидные компоненты преобразуются до жидких углеводородов нефтяного ряда?

Как показывают исследования [6, 7], величины растворимости метана в жидких углеводородах в пять раз выше, чем при сорбции на асфальтене, в девять раз выше, чем при сорбции на керогене, и близки к величинам сорбции метана на микропористых углях. Растворимость метана в жидких углеводородных смесях возрастает с увеличением давления во всем измеряемом диапазоне (0–40 МПа) и с увеличением содержания в смесях летучих компонентов. Из этого следует, что газоемкостные и газоудерживающие свойства нефтегазоматеринских отложений непрерывно увеличиваются в процессе последовательного преобразования в них органического вещества до жидких нефтяных углеводородов. Это еще раз подтверждает низкую эмиграционную возможность газообразных углеводородов, генерируемых в нефтегазоматеринских отложениях на всех стадиях нефтегазогенерации.

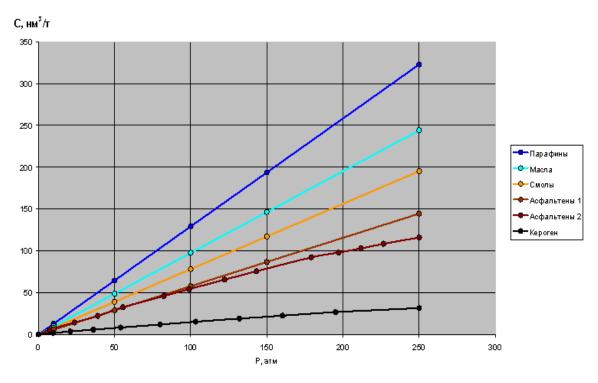


Рис. 4. Сравнительная закономерность изменения количества газа, связанного компонентами битумоидов и керогеном, при изменении пластового давления. T=30°C

Выполненные исследования показали, что в условиях залегания образующиеся в нано- и микроочагах керогена асфальтены и смолы, помимо газа, сорбируют, растворяют в себе значительные количества жидких углеводородов как при непосредственном контакте с жидкими углеводородами (нефтью), так и через процессы сорбции компонентов жидких УВ из их паров в пластовых газах.

Асфальтены с сорбированными ими парами конденсата находятся в набухшем состоянии ($K_H > 2,2-3,5$). В сорбате содержание углеводородов гексана (C_6) и пентана (C_7) ниже, а октана (C_8), нонана (C_9) и декана (C_{10}) выше, чем в равновесном паре. Аналогичная закономерность наблюдается при поглощении паров конденсата смолами. Поглощение паров конденсата смолами приводит к снижению их вязкости.

В табл. 5 для каждого компонента конденсата в газовой фазе и для каждого компонента битумоидов представлены значения удельной сорбции D_i из парогазовой смеси при при $T=30~^{\circ}C$ (303 K) и 70 $^{\circ}C$ (343 K) ($D_i=g_i$ / P_i , τ/τ атм, где g_i — содержание сорбированного компонента конденсата в битумоиде, τ/τ ; P_i — парциальное давление компонента конденсата в равновесной газовой фазе, атм).

Таблица 5 Значения коэффициента удельной сорбции (поглощения) компонентов конденсата из газовой фазы, D_i , τ/τ атм

Компонент	Асфалі	ьтены	Смо	ЛЫ	ны Масл		Парафины	
газоконден- сата	30 °C	70 °C	30 °C	70 °C	30 °C	70 °C	30 °C	70 °C
Пентан, С5	0,593	0,153	2.29	1,26	3,15	2,23	4,39	3,28
Гексан, С6	1,187	0,3	4,58	2,36	6,41	4,19	8,79	6,44
Гептан, С7	2,74	0,96	8,26	3,0	10,3	5,32	14,8	7,8
Октан, С8	7,08	2,61	14,9	5,46	19,5	9,68	28,6	14,2
Нонан, С9	19,2	10,4	24,8	12,0	32,1	21,3	47,6	31,2
Декан, С10	43,3	15,9	75,0	22,3	98,2	39,5	144	58,0

При десорбции сорбированных углеводородов из асфальтенов и смол первоначально десорбируются наиболее легкие компоненты — углеводороды C_5 , C_6 и C_7 . Затем их доля в десорбате постепенно снижается, но возрастает содержание тяжелых углеводородов — октана, нонана и декана. Такой характер десорбции является закономерным следствием различий в размерах молекул сорбированных углеводородов.

В табл. 6 приведен состав связанного конденсата, в % (масс.), сорбированного отдельными компонентами битумоидов в сравнении с приведенным составом равновесных паров конденсата.

На рис. 5 представлена закономерность изменения в компонентах битумоидов при температурах 30 и 70 0 С содержания связанного конденсата (A, т/т) с изменением величины газоконденсатного фактора (КГФ, мл/м³) при составе паров равновесного газа: $C_5=14,6$; $C_6=25,7$; $C_7=22,9$; $C_8=19,6$; $C_9=7,9$; $C_10=2,6$ (в мл/м³).

Состав связанного конденсата, сорбированного отдельными компонентами ВМС в сравнении с составом равновесных паров конденсата

Компонент	T, ⁰ C	Содержание углеводородов в связанном конденсате, % (масс.)							
битумоида		C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀		
Асфальтены	30	2,54	7,48	13,21	26,03	25,13	17,01		
" "	70	1,68	4,85	11,87	24,16	34,80	16,03		
Смолы	30	4,61	13,59	18,73	25,35	15,27	13,85		
" "	70	6,3	17,41	16,93	23,10	18,32	10,25		
Масла	30	4,46	13,37	16,42	31,08	13,86	12,72		
" "	70	6,73	17,32	16,82	22,69	18,21	10,17		
Парафины	30	4,66	13,75	17,71	25,6	15,07	13,96		
" "	70	6,23	18,04	16,7	22,8	18,08	10,12		
Состав равновесных									
паров конденсата,	_	14,6	25,7	22,9	19,6	7,9	2,6		
% (масс.)									

Состав паров равновесного конденсата в газе, % (масс.): C_5 – 14,6; C_6 – 25,7; C_7 – 22,9; C_8 – 19,6; C_9 – 7,9; C_{10} –2,6;

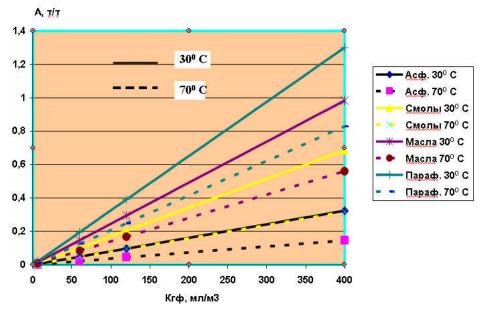


Рис. 5. Закономерность изменения содержания сорбированного (связанного) конденсата в компонентах битумоидов (A, т/т) с изменением величины газоконденсатного фактора (КГФ, мл/м³) и температуры (30 и 70 0 С) при составе паров равновесного конденсата в газе, % (масс.): C₅ – 14,6; C₆ – 25,7; C₇ – 22,9; C₈ – 19,6; C₉ – 7,9; C₁₀ – 2,6

Как и для пластового газа, сорбционные (растворяющие) свойства компонентов битумоидов по отношению к парам газового конденсата растут в ряду асфальтены — смолы — масла — парафины и уменьшаются с увеличением температуры.

Анализ результатов проведенного комплекса исследований позволяет считать нефтегазоматеринские отложения высокочувствительной термодинамической системой, стремящейся к восстановлению своего внутреннего термодинамического равновесия на каждой из стадий преобразований ее органической и неорганической составляющих — на каждой из стадий нефтегазогенерации.

ЛИТЕРАТУРА

- 1. Скибицкая Н.А., Кузьмин В.А., Большаков М.Н., Бурханова И.О., Крючков В.А. Закономерность и взаимосвязь катагенетических процессов преобразования органического вещества в составе нефтегазоматеринской карбонатно-органической матрицы месторождений углеводородов // Сб. тр. по материалам седьмой международной научно-практической конференции «Новые идеи в геологии нефти и газа 2017». М.: Изд-во МГУ, 2017. С. 327–333.
- 2. Дмитриевский А.Н., Скибицкая Н.А., Зекель Л.А., Прибылов А.А., Навроцкий О.К., Краснобаева Н.В., Доманова Е.Г. Состав и свойства природных высокомолекулярных компонентов газоконденсатных и нефтегазоконденсатных месторождений // Химия твердого топлива. 2010. № 3. С. 67–67.
- 3. *Прибылов А.А.*, *Скибицкая Н.А.*, *Зекель Л.А*. Сорбция метана, этана, пропана, бутана, диоксида углерода и азота на керогене // Журнал физической химии. 2014. Т. 88. № 6. С. 1043–1051.
- 4. *Pribylov A.A.*, *Skibitskaya N.A.*, *Zekel L.A.* Sorption of methane, ethane, propane, butane, carbon dioxide and nitrogen by kerogen // Russian Journal of Physical Chemistry A. 2014. Vol. 88. No. 6. P. 1028–1036.
- 5. Скибицкая Н.А., Бурханова И.О., Большаков М.Н., Доманова Е.Г., Кузьмин В.А., Пуго Т.А., Марутян О.О., Яковлева О.П., Зекель Л.А., Прибылов А.А., Навроцкий О.К. Научное обоснование оценки неучтенных запасов связанного газа газоконденсатных и нефтегазоконденсатных месторождений, сорбированного высокомолекулярными компонентами и керогеноподобным полимером продуктивных отложений (на примере Оренбургского НГКМ) [Электронный ресурс] // Георесурсы, геоэнергетика, геополитика:

Электрон. науч. журн. 2014. Вып. 1(9). 21 с. – Режим доступа: http://www.oilgasjournal.ru (Дата обращения 27.04.2018).

- 6. Прибылов А.А., Скибицкая Н.А., Зекель Л.А. Растворимость метана в жидких углеводородах при высоких давлениях // Изв. Академии наук. Сер. химическая. 2015. № 4. С. 841–845.
- 7. *Pribylov A.A.*, *Skibitskaya N.A.*, *Zekel L.A*. Methane solubility in liquid hydrocarbons at high pressure // Russian Chemical Bulletin, International Edition. April 2015. Vol. 64, No. 4. P. 841–845.