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Эквивалентный радиус для различных режимов течения  
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Аннотация. Актуальность. При численном моделировании разработки месторождений 
углеводородов скважины представляются точечными источниками/стоками. Как следствие, 
возникает проблема расчета забойного давления, которое сильно отличается от давления в 
ячейке расчетной сетки. Для связи этих давлений используют аналитические решения, например, 
основанные на формуле Писмена. Однако такие решения получены для квазистационарного 
режима и требуют уточнения для других режимов течения. Цель работы. Получить решения 
писменовского типа для различных видов течений на квадратной и прямоугольной расчетных 
сетках. Методы. Используется метод «сшивания» глобального численного решения и локального 
аналитического решения в ячейке, содержащей скважину (источник/сток). Результаты. Получена 
новая формула эквивалентного радиуса (радиуса Писмена) для псевдостационарного режима 
течения при моделировании на прямоугольной сетке. Выводы. Показана необходимость 
использования в симуляторах пласта уточненной формулы для расчета эквивалентного радиуса 
при моделировании в условиях псевдостационарного течения на регулярной неквадратной сетке. 
Доказана допустимость применения стационарной формулы Писмена для эквивалентного 
радиуса при моделировании на квадратной сетке в случаях, когда реализуются 
псевдостационарный режим и режим потока с преобладанием границ. 
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Введение 

При моделировании разработки 

месторождений углеводородов сущест-

венным осложнением является большой 

контраст между характерными размерами 

скважин (радиус около 0,1 м) и типичных 

ячеек сеточной дискретизации пласта  

(10–100 м в горизонтальной плоскости). 

Вследствие чего скважины представляются 

не как внутренние границы, а в форме 

источников/стоков в центрах соответст-

вующих сеточных блоков. Однако подобная 

аппроксимация приводит к систематической 

погрешности, поскольку значение давления  

в сеточном блоке не учитывает особенностей 

распределения давления в призабойной зоне. 

Таким образом, разница давления в блоке  

и забойного давления вызывает приток/отток 

флюида из сеточного блока в скважину  

или наоборот, и требуется отдельная  

модель, чтобы связать дебит скважины  

с соответствующим перепадом давления. 

Проблема перехода от давления  

в скважинном блоке к реальному давлению 

на скважине рассматривалась впервые  

в СССР. Исследования проводились в связи  

с решением двумерных задач о потоках  

в пласте на электрических интеграторах  

с RC-сетками (сопротивление–емкость) [1]. 

Впоследствии аналогичные подходы были 

адаптированы для конечно-разностных 

методов решения задач течения жидкости  

в пористых средах [2, 3], а затем 

распространены и на моделирование газовых 

скважин [4]. Фундаментальный вклад  

в развитие методологии был сделан Швабе и 

Брандом [5], которые впервые предложили 

концепцию представления скважины как 

точечного источника в симуляторе пласта 

(программе численного моделирования 

фильтрации флюидов). До 1977 г. наиболее 

значимым исследованием в этой области 

считалась работа ван Пуллена и соавторов 

[6], где давление в скважинном блоке сетки 

интерпретировалось как среднее по площади, 

соответствующей области пласта. Схожий 

подход использовали Коатс и коллеги [7]  

в их симуляторе паротеплового воздействия, 

где связь между сеточным и забойным 

давлениями устанавливалась через индекс 

продуктивности. 

В работе [8] Писмен предложил 

интерпретировать давление в скважинном 

блоке как давление, формирующееся  

на некотором эквивалентном радиусе 

(радиусе Писмена) внутри этого блока.  

Он получил формулу для эквивалентного 

радиуса при стационарном течении флюида 

SS (steady state flow) в соответствии  

с законом Дарси. Писмен показал, что  

для большинства блоков сетки ассоциация 

давления в них со средним давлением  

по площади блока уместна, однако для блока, 

содержащего скважину, давление в блоке не 

является средним давлением. В дальнейшем 

Писмен представил формулы эквивалентного 

радиуса для случаев прямоугольной сетки, 

анизотропной проницаемости пласта и 

расположения скважины вне центра блока  

[9, 10], но также в предположении 

стационарного течения. В работах [11–13] 

метод Писмена был распространен на сетки  

с ячейками сложной геометрии. В статье [14] 

авторы представили общий математический 

аппарат для построения формул для 

эквивалентного радиуса (радиуса Писмена)  

и исследовали с математической точки 

зрения не только случай линейного  

течения по закону Дарси, но и нелинейного 

течения типа Форхгеймера. В статье [15] 

авторы получили новые формулы для 

эквивалентного радиуса Писмена в случаях 

псевдостационарного режима течения PSS 

(pseudo steady-state flow) и режима течения  

с преобладанием границ BD (boundary 

dominated flow) на квадратной сетке. 
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В данной работе приведена  

общая постановка задачи и впервые 

систематизированы полученные ранее 

результаты. На основе подходов  

[14, 15] получены новые формулы  

для эквивалентного радиуса Писмена  

в случае PSS-режима течения  

на прямоугольной сетке. Показано, как 

размеры расчетных ячеек и наличие 

анизотропии проницаемости влияют  

на получаемую вспомогательную 

математическую задачу и построение  

ее решения. Приводятся численные 

результаты, демонстрирующие ограничения 

в применении традиционной формулы 

Писмена и необходимость использовать 

полученные выражения для режимов 

течения, отличающихся от стационарного. 

Цель работы – получить решения 

писменовского типа для различных  

видов течений на квадратной и 

прямоугольной расчетных сетках. 

 

Методы 

Используется метод «сшивания» 

глобального численного решения и 

локального аналитического решения  

в ячейке, содержащей скважину 

(источник/сток).  

 

Результаты и обсуждение 

Общая постановка задачи 

Рассмотрим приток флюида  

к одиночной скважине с границей w   

в изолированной двумерной области U
  

с внешней границей e . Пусть V  – объем 

области пласта U  с границей e wU =   

и толщиной h . Краевая задача для 

нестационарного течения слабосжимаемого 

флюида по линейному закону Дарси  

в анизотропной среде имеет вид: 

 

( )
1

 p

p
K p c m

t


  =


в ,U  

 

(1) 

0  
p
=

ν
на ,e  

 

(2) 

1
 

wГ

p q
K dl

h


 = −

 ν
на w , (3) 

 

где   – вязкость флюида;  

K  – тензор проницаемости пласта; 

( ), ,p p x y t=  – давление;  

pc  – коэффициент сжимаемости насыщенной 

пористой среды;  

m  – пористость;  

t  – время;  

ν  – направление внешней нормали к 

границе;  

q  – дебит скважины;  

 

Используя пятиточечный шаблон, 

представленный на рис. 1a, где координатные 

оси считаются ориентированными по 

главным осям тензора проницаемости, 

построим аппроксимацию задачи (1)-(3) 

методом конечных объемов в блоке, 

содержащем скважину с дебитом q . Пусть 

скважина находится в узле 0; ip  – давление  

в узле i , 0 4i =  ; , ,x y h   – размеры 

нулевого сеточного блока, а также x  – 

расстояние от 0-го узла до узлов 1 и 3, y  – 

расстояние от 0-го узла до узлов 2 и 4, 

причем x y   ; 0V x y h=    – объем 

сеточного блока 0. 
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а/a б/b 

Рис. 1. Пятиточечный шаблон для аппроксимации уравнения материального баланса при различных 

размерах сеточных блоков: а – ,x y  ;  б  –   

Fig. 1. Five-point template for approximation of the material balance equation with various sizes of grid blocks 

a – ,x y  ;  b –   

Источник: адаптировано из [14] 
Source: adapted from [14] 

 

Интегрируя уравнение (1) по методу контрольных объемов в блоке 0 и на шаге  

по времени от t  до t + , применяя теорему Остроградского–Гаусса и учитывая также 

постоянную толщину области и граничное условие (3), получим: 

 

( ) ( )0
0 0

1
p

V
c m p t p t

h
  + − = 


 

( ) ( )0 2 0 1

1 Δ Δ
2 ( ) ( ) ( ) ( ) ,

Δ Δ
y x

q x y
k p t p t k p t p t

h y x

 
= − − + − 

 
   

(4) 

 

где , x yk k  – соответствующие главные значения тензора проницаемости K .  

 

Для простоты выражения записаны  

для явной схемы, но все дальнейшие 

выкладки справедливы и для неявной 

аппроксимации по времени. 

Уравнение (4) представляет собой 

аппроксимацию уравнения материального 

баланса (уравнения неразрывности) для 

нестационарного течения слабосжимаемого 

флюида по закону Дарси в анизотропной 

среде на прямоугольной сетке. 

В работах Писмена [8–10] при  

выводе формул для эквивалентного радиуса 

0R  предполагается квазистационарный (SS) 

режим течения, при котором дебит  

может быть линейно связан формулой 

Дюпюи с текущим перепадом давления 

между заданным внешним контуром и 

стенкой скважины. 

При реальном течении в пласте на 

условном контуре зоны дренирования 

скважины обычно справедливо другое 

условие – непротекания, вызванное влиянием 

работы соседних скважин или границ залежи. 
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Условию непротекания на внешнем контуре 

соответствуют два ключевых режима течения: 

псевдостационарный (PSS), с заданным 

дебитом на скважине и постоянным темпом 

снижения давления, и режим преобладания 

границы (BD), с заданным давлением на 

стенке скважины. Следовательно, решения 

Писмена требуют уточнения в применении  

к режимам PSS и BD. 

Отметим, что в приложении к статье 

[8] Писмен рассматривает режим PSS  

и приходит к выводу о справедливости  

той же формулы, что и для SS-режима. 

Однако его вывод для PSS-режима  

содержит неточность: условие PSS-режима 

применяется к нестационарному решению для 

давления с бесконечно удаленной внешней 

границей, а не к PSS-решению с непро-

ницаемым внешним контуром. Поэтому 

вывод формулы для эквивалентного радиуса 

при PSS-режиме требует уточнения даже  

для простейшего случая изотропной 

проницаемости и квадратной сетки. 

 

Квадратная сетка,  

PSS- и BD-режимы 

Предположим, что среда изотропна  

( x yk k k= = ) и при моделировании 

используется также пятиточечный шаблон, 

но с квадратными ячейками, т. е. 

Δ Δ Δx y= =  (см. рис. 1б).  

 

Тогда, в силу симметричности 
1 2( ) ( )p t p t= , уравнение (4) примет вид: 

 

( ) ( ) ( )0
0 0 0 1

1
4 ( ) ( ) .p

V q k
c m p t p t p t p t

h h
  + − = − − 

 
 (5) 

 

Предположим, что течение соответ-

ствует PSS-режиму для слабосжимаемого 

флюида. Тогда изменение давления в каждой 

точке определяется величиной сжимаемости 

pc , в частности: 

 

( ) ( )( ) ,
p

p t p t q
m V c

+ − = 
 


  (6) 

 

где V h U=  . 

 

При вышеуказанном предположении 

уравнение (5) примет вид: 

 

( ) ( )( ) 0
0 14 1 ,

Vk q
p t p t

h V

 
 − =  − 

 
 (7) 

 

где дебит q  задается постоянным  

по времени, то есть одинаковым для любого 

момента времени t . Заметим, что давление 

( )ip t  зависит времени, но разность 

давлений – левая часть уравнения (7) –  

не зависит от t . Это заметно  

отличает псевдостационарный режим от 

стационарного. 

В статье [16] авторами получено PSS-

решение задачи (1)-(3) для радиального 

притока слабосжимаемого флюида к 

скважине радиуса wR  с заданным значением 

дебита на скважине в изолированном 

круговом пласте радиуса eR :  

 

𝑝𝑃𝑆𝑆(𝑟, 𝑡) = 𝑤(𝑟) +
𝑞̃

𝑐𝑝 ⋅ 𝑚 ⋅ |𝑈|
𝑡, (8) 
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где 

 

𝑤(𝑟) =
𝜇

𝑘
⋅

𝑞

2𝑉
[
1

2
(𝑟2 − 𝑅𝑤

2 ) − 𝑅𝑒
2 ln

𝑟

𝑅𝑤
] . (9) 

 

Подставляя  (8) в (7),  можно  получить  

выражение для определения радиуса 

Писмена 
0R  для режима PSS: 

 

( )
2

2

0

0

Δ
2 ln ,PSS

e PSS
R U R

R

 
− = −  

 
 

 

где 
0

PSSR −  радиус Писмена при PSS-режиме. 

 

Если устремить внешнюю границу  

 eR  к бесконечности, то радиус Писмена 

будет  равен: 

 
2

0 Δ .
e

PSS

R
R e

−

→
= 



 (10) 

 

Таким образом, при достаточно 

большом размере зоны дренирования  

радиус Писмена при PSS-режиме совпадает  

с радиусом Писмена при стационарном 

режиме. Однако в общем случае это не так. 

Из (10) также видно, откуда возник вывод 

Писмена в работе [8] о применимости 

формулы (10) для PSS-случая: он неявно 

предполагал большой размер области 

течения, опираясь на решение для давления  

в неограниченном пласте. 

 

При помощи аналогичного подхода в статье [15] авторами было получено уравнение для 

определения радиуса Писмена на квадратной сетке при режиме потока с преобладанием границы: 

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 0 0 0 04 [ Δw w w

k
K J R N R N R J R J R N−   −  −  +     



( ) ( ) ( ) ( )0 0 0 0 0 0 0 1 0  Δ 2  w w w w

k
N R J K R N R J R +  −   −

 
     


 

( ) ( ) ( ) ( )1

0 0 1 0 0 0 0 0 0 0w w p wJ R N R mV c J R N R− −  =  −
 

      

( ) ( )
0

0 0 0 0 0  1 .p

k

c m

wN R J R e
− 

 
 

  −   −
  
 

 


   

(11) 

 

В работе [17] показано, что  

 

( )
0

1
.

U

w x dx



  

(12) 

 

В  кольцевой  области  (0, ) \ (0, )e wU B R B R=  

 

неравенство (12) можно преобразовать к виду: 

 

( )0 0 0 2

1
, ,

ln
e w

e e

R R C
R R

=    (13) 

 

где 0C  – константа. 
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Рассмотрим случай, когда внешняя 

граница находится на достаточном удалении  

от внутренней границы. Учитывая этот факт 

в выражении (13), получим, что 0  стремится 

к нулю. Тогда аргументы 0 0,   ΔwR   и 

0 0R  в уравнении (11) малые. При аргу-

ментах 0  и wR , стремящихся к нулю, сла-

гаемые 
02

2

wR



 и 0 02

ln
2 2

w wR R 
 
 
 

 


 

также стремятся к нулю, следовательно, ими 

можно пренебречь. Так как 0  стремится  

к нулю, то 
0

p

k

c m
e
− 

 
 


 стремится к единице  

и правой частью уравнения (11) также можно 

пренебречь 

Учитывая сделанные выше выводы и 

используя асимптотические формулы для 

функций Бесселя и Неймана фиксированного 

целого порядка 0v   при малых  

значениях аргумента, выражение (11) можно 

преобразовать  к  виду: 
0

2 Δ
ln 1,

BDR
=


  откуда  

2
0  Δ .

e

BD

R
R e

−

→
= 



 

где 
0

BDR  – радиус Писмена при режиме 

потока с преобладанием границ.  

Таким образом, формула для 

эквивалентного радиуса при режиме  

течения с преобладанием границ совпадает  

с формулой, полученной Писменом для 

стационарного режима течения в статье [8], 

только при условии достаточно удаленной 

внешней границы. 

 

Сравнительный анализ  
полученных формул 

Подтвердить сделанные выше выводы 

можно численно. Вычислим значения 0 / ΔR  

для таких eR  и Δ , что соотношение / ΔeR  

лежит в диапазоне от 2 до 50. По рис. 2 

видно, что при увеличении / ΔeR  отношение 

0 / ΔR  стремится к 
  /2e−  и при 

псевдостационарном режиме,  и  при  режиме  

течения с преобладанием границ [15].  

 

 

Рис. 2. Зависимость соотношения 
0 / ΔR  от 

e / ΔR  для PSS- и BD-режимов 

Fig. 2. Dependence of the ratio 
0 / ΔR  on 

e / ΔR  for the PSS and BD modes 

, 
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С уменьшением / ΔeR  до 2, что 

соответствует известному правилу 

размещения трех полных ячеек регулярной 

сетки между соседними скважинами, 

отклонение от SS-решения Писмена резко 

возрастает, но остается допустимым с 

практической точки зрения. Таким образом, 

при моделировании данных режимов течения 

и соответствующем выборе численной сетки 

допускается использовать формулу для 

радиуса Писмена, выведенную для 

стационарного режима течения. 

 

Неквадратная сетка, PSS-режим 

Рассмотрим задачу о псевдо-

стационарном режиме притока слабо-

сжимаемого флюида к скважине  

в изотропной среде, но в случае, когда для 

моделирования используется прямоугольная 

сетка (см. рис 1б).  

 

С учетом условия псевдостационарности (6) уравнение (4) для PSS-решения (8) примет 

следующий вид: 

 

( ) ( )( ) ( ) ( )( )0
0 01 2 .

Vq k x y
w R w y w R w x

h V y x

   
 − = − −  + −    

    
 (14) 

 

Подставим (9) в уравнение (14) и выполним преобразования, учитывая, что область притока 

– это кольцо, т. е. ( )2 2

e wV R R h= − : 

 

( )
2 2

2 2

αΔ
1 w

e e

x R

R R

 
− − = 

 
  

( ) ( )

2 2

20 0

22 2 0

2 2

α 1
Δ Δ

Δ αΔ 1 ln ln ,
2 2 Δ e e

R R

Rx x
x x

R R x

   
− −   

   = − − + + −   

(15) 

 

где 
Δ

 
Δ

y

x
= .  

 

Трансцендентное уравнение (15) 

представляет собой выражение для 

определения радиуса Писмена на прямо-

угольной сетке при PSS-режиме течения 

слабосжимаемого флюида к скважине  

в изотропной среде. 

При устремлении внешней границы eR  

к бесконечности некоторыми слагаемыми  

в (15) можно пренебречь, вследствие чего 

выражение (15) упрощается до формулы:  

0

2

ln
exp .

Δ 1
e

PSS

R

R

x
→

−
=

+

 


 (16) 

 

Формула (16) представляет собой выра-

жение для радиуса Писмена при PSS-режиме 

течения в случае достаточно удаленной 

внешней границы и совпадает с формулой, 

полученной Писменом для прямоугольной 

сетки и стационарного режима [9].  
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Однако, когда граница расположена 

близко к скважине и   принимает большие 

значения, разница между значениями 

эквивалентного радиуса по формулам (15)  

и (16) становится значительной. Сделанные 

выводы подтверждает график, представ-

ленный на рис. 3, где для различных   и eR  

вычислено  отношение 
0 /ΔR x  по  формулам  

(15) и (16). 

 

 

Рис. 3. Зависимость 
0 /ΔR x  от Δ / Δy x  для SS- и PSS-режимов течения 

Fig. 3. Dependence of 
0 /ΔR x  on Δ / Δy x  for the SS and PSS flow modes 

 

Отметим, что случай больших 

значений   при небольших значениях 

/ΔeR x  характерен для моделирования 

притока к горизонтальным скважинам, где  

в роли x  выступает вертикальная 

координата, а величина 
eR  определяется 

расстоянием до кровли и подошвы пласта. 

Возвращаясь к статье Писмена [9], 

заметим, что он также не рекомендует 

применять формулу (16) при значениях  , 

существенно отличающихся от 1. Однако 

предложенное им альтернативное выражение 

строится на анализе численных решений для 

конкретной краевой задачи (задачи Маскета), 

и его применимость в более общем случае 

требует отдельного исследования. 

 

Неквадратная сетка, PSS-режим, 

анизотропная среда 

Рассмотрим задачу о псевдостацио-

нарном режиме течения слабосжимаемого 

флюида в анизотропной среде, когда для 

моделирования используется прямоугольная 

сетка. 

 

Уравнение (4) преобразуется к виду: 

 

( ) ( )( ) ( ) ( )( )0
0 2 0 1

1 Δ Δ
1 2 .

Δ Δ
y x

Vq x y
k p t p t k p t p t

h V y x

  
 − = − − + −   
   

 (17) 
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С учетом анизотропии PSS-решение для (17) можно выразить следующим образом: 

 

( ) ( ), , , ,PSS

p

q
p x y t w x y t

c m U
= +

 
 

 

где ( , )w x y  – решение стационарной задачи: 

 

2 2

2 2

1
,x y

w w q
k k

x y U

  
+ = 

  
 

 

(18) 

2 20 на  Г ,  0 на Г ,  .e w

w
w r x y


= = = +

ν
  (19) 

 

Чтобы привести уравнение (18) к 

уравнению Пуассона, сделаем замену 

переменных, использованную Писменом  

в  работе  [9]  для  преобразования  уравнения  

Лапласа: 

11

44
' ',   .

y x

x y

k k
x x y y

k k

  
= =     
   

 

 

Тогда задача (18)-(19) принимает вид: 

 

2 2

2 2
,

' '
x y

w w q

x y Uk k

 
+ =

 


 (20) 

1/2 1/2

2 20 на Г ,  0 на Г ,  ' ' .
yx

e w

y x

kkw
w r x y

k k

   
= = = +       ν

 (21) 

 

Решив задачу (20)-(21), можно 

получить распределение давления при 

псевдостационарном режиме течения  

в анизотропной среде. Подставив это 

решение в уравнение (17), можно  

получить соответствующее выражение  

для радиуса Писмена. Однако поиск 

аналитического решения задачи (20)-(21) 

осложнен тем, что после замены  

переменных внешняя и внутренняя  

границы течения представляются  

подобными эллипсами. В статьях [18–20] 

приводятся аналитические решения  

похожих задач с эллиптическими  

границами, однако и внутренний, и  

внешний эллипсы являются софокусными,  

и применить описанные в этих  

работах методы к задаче (20)-(21)  

не представляется возможным. Таким 

образом, возможность вывода аналити-

ческого выражения для радиуса Писмена  

в случае PSS-режима и анизотропной 

проницаемости требует дальнейшего 

исследования. 
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Заключение 

В данной работе показано, что 

классические формулы Писмена, выведенные 

для стационарного режима и квадратной 

сетки, не всегда корректно описывают  

связь забойного и блочного давлений  

при моделировании притока к скважине и 

требуют уточнения при переходе к более 

реалистичным режимам – псевдостацио-

нарному и режиму преобладания границ.  

Для псевдостационарного режима на 

прямоугольной сетке получено новое 

выражение для эквивалентного радиуса, 

учитывающее влияние отношения размеров 

ячеек и расстояния до внешних границ  

зоны дренирования. Результаты численного 

анализа подтверждают, что отклонение 

эквивалентного радиуса от стационарного 

значения существенно возрастает при 

уменьшении расстояния от скважины  

до внешних границ области дренирования, а 

также при высокой вытянутости ячеек сетки. 

Таким образом, применение предложенной 

формулы повышает точность моделирования 

притока к скважине в условиях, когда 

течение отклоняется от стационарного или 

геометрия сетки существенно отличается  

от квадратной. Полученные результаты 

могут быть использованы при разработке  

и совершенствовании вычислительных 

модулей симуляторов пласта. Дальнейшее 

развитие работы связано с определением 

эквивалентного радиуса для псевдо-

стационарного режима в анизотропной среде, 

где преобразование области приводит  

к эллиптическим границам и требует  

новых методов решения соответствующих 

граничных задач. 

 

Вклад авторов 

А.Э. Жаглова – формальный анализ, проведение исследования, визуализация, создание 

черновика рукописи. 

А.И. Ибрагимов – концептуализация, методология, создание рукописи и ее редактирование. 

И.М. Индрупский – методология, создание рукописи и ее редактирование. 

Э.С. Закиров – концептуализация, руководство исследованием, создание рукописи и ее 

редактирование.  

Все авторы утвердили окончательную версию статьи. 

 

Конфликт интересов 

Авторы заявляют об отсутствии конфликта интересов.  

 

Список источников 

1. Толстов Ю.Г. Применение метода электрического моделирования физических явлений 

к решению некоторых задач подземной гидравлики // Журнал технической физики. 1942. Т. 12, 

Вып. 10. С. 587–605. 

2. Вахитов Г.Г. Решение задач подземной гидродинамики методом конечных разностей // 

Труды ВНИИнефть. 1957. Вып. 10. С. 53–88. 

3. Вахитов Г.Г. Эффективные способы решения задач разработки неоднородных 

нефтеводоносных пластов. М.: Гостоптехиздат. 1963. 216 с. 

4. Закиров С.Н. К моделированию газовых скважин при нарушении линейного закона 

фильтрации // Газовое дело. 1970. № 6. 8 с. 



Актуальные проблемы нефти и газа. Т. 16, № 4, 2025 http://oilgasjournal.ru 

 

515 
 

5. Schwabe K., Brand J. Prediction of reservoir behavior using numerical simulators // SPE-

AIME Annual Fall Meeting, Houston, Texas, USA, 1–4 October 1967. Paper SPE 1857-MS. 

https://doi.org/10.2118/1857-MS 

6. van Poollen H.K., Breitenbach E.A., Thurnau D.H. Treatment of individual wells and grids in 

reservoir modeling // Society of Petroleum Engineers Journal. 1968. Vol. 8, No. 4. P. 341–346. 

https://doi.org/10.2118/2022-PA 

7. Coats K.H., George W.D., Chu C., Marcum B.E. Three-dimensional simulation of 

steamflooding // Society of Petroleum Engineers Journal. 1974. Vol. 14, No. 6. P. 573–592. 

https://doi.org/10.2118/4500-PA 

8. Peaceman D.W. Interpretation of well-block pressures in numerical reservoir simulation  

// Society of Petroleum Engineers Journal. 1978. Vol. 18, No. 3. P. 183–194. 

https://doi.org/10.2118/6893-PA 

9. Peaceman D.W. Interpretation of well-block pressure in numerical reservoir simulation with 

nonsquare grid blocks anisotropic permeability // Society of Petroleum Engineers Journal. 1983. Vol. 23, 

No. 3. P. 531–543. https://doi.org/10.2118/10528-PA  

10. Peaceman D.W. Interpretation of well-block pressures in numerical reservoir simulation. Part 

3. – Off center and multiple wells within a well-block // SPE Reservoir Engineering. 1990. Vol. 5, No. 2. 

P. 227–232. https://doi.org/10.2118/16976-PA  

11. Aavatsmark I. Interpretation of well-cell pressures on stretched hexagonal grids in numerical 

reservoir simulation // Computational Geosciences. 2016. Vol. 20, No. 5. P. 1043–1060. 

https://doi.org/10.1007/s10596-016-9567-2 

12. Aavatsmark I. Interpretation of well-cell pressures on hexagonal grids in numerical  

reservoir simulation // Computational Geosciences. 2016. Vol. 20, No. 5. P. 1029–1042. 

https://doi.org/10.1007/s10596-016-9575-2 

13. Aavatsmark I. Equivalent well-cell radius for hexagonal K-orthogonal grids in numerical 

reservoir simulation // Applied Mathematics Letters. 2016. Vol. 61. P. 122–128. 

https://doi.org/10.1016/j.aml.2016.05.013 

14. Ibraguimov A., Zakirov E., Indrupskiy I., Anikeev D. Fundamentals in Peaceman model for 

well-block radius for non-linear flows near well // Applied and Computational Mathematics. 2024. 

Vol.13, No. 1. P. 53–69. https://doi.org/10.30546/1683-6154.23.1.2024.53 

15. Zhaglova A.E., Ibragimov A.I., Indrupskiy I.M. et al. Equivalent radius for well inflow 

calculations at different regimes in reservoir flow simulations // Journal of Physics: Conference Series. 

2024. Vol. 2701. P. 012063. https://doi.org/10.1088/1742-6596/2701/1/012063 

16. Ибрагимов А., Закиров Э., Индрупский И. и др. Материальный баланс Эйнштейна и 

моделирование течения сжимаемой жидкости вблизи границы // Современная математика. 

Фундаментальные направления. 2023. Т. 69, № 4. C. 643–663. https://doi.org/10.22363/2413-3639-

2023-69-4-643-663 

17. Ibragimov A., Khalmanova D., Valkó P.P., Walton J.R. On a mathematical model of the 

productivity index of a well from reservoir engineering // SIAM Journal on Applied Mathematics. 2005. 

Vol. 65, No.6. P. 1952–1980. https://doi.org/10.1137/040607654  

18. Kucuk F., Brigham W.E. Transient flow in elliptical systems // Society of Petroleum Engineers 

Journal. 1979. Vol. 19, No. 6. P. 401–410. https://doi.org/10.2118/7488-PA 



Актуальные проблемы нефти и газа. Т. 16, № 4, 2025 http://oilgasjournal.ru 

 

516 
 

19. Golębiowski J., Zaręba M. The distribution of the thermal field in an elliptical electric 

conductor coated with insulation // Energies. 2021. Vol. 14, No. 21. P. 6880. 

https://doi.org/10.3390/en14216880 

20. Liemert A., Kienle A. Exact solution of Poisson’s equation with an elliptical  

boundary // Applied Mathematics and Computation. 2014. Vol. 238. P. 123–131. 

https://doi.org/10.1016/j.amc.2014.04.003 

 

 

Информация об авторах 

Анна Эрнстовна Жаглова – младший научный сотрудник, Институт проблем нефти и газа 

РАН, Москва, Россия; SPIN-код: 9252-7623, https://orcid.org/0000-0002-7492-6354; e-mail: 

azhaglova@ipng.ru 

Акиф Исмаил-оглы Ибрагимов – д-р физ.-мат. наук, главный научный сотрудник, Институт 

проблем нефти и газа РАН, Москва, Россия; SPIN-код: 3162-9406, https://orcid.org/0000-0001-6827-

8007; e-mail: akif@ipng.ru 

Илья Михайлович Индрупский – д-р техн. наук, профессор РАН, заместитель директора по 

научной работе, главный научный сотрудник, Институт проблем нефти и газа РАН, Москва, 

Россия; SPIN-код: 3003-9701, https://orcid.org/0000-0002-0038-6279; e-mail: i-ind@ipng.ru 

Эрнест Сумбатович Закиров – д-р техн. наук, профессор РАН, директор, главный научный 

сотрудник, Институт проблем нефти и газа РАН, Москва, Россия; SPIN-код: 6324-0801, 

https://orcid.org/0000-0001-5306-5236; e-mail: ezakirov@ogri.ru  

 

 

Поступила в редакцию  06.11.2025 

Принята к публикации 12.12.2025 

 

 

mailto:azhaglova@ipng.ru
mailto:akif@ipng.ru
mailto:i-ind@ipng.ru
mailto:ezakirov@ogri.ru


Actual Problems of Oil and Gas. Vol. 16, No. 4, 2025   http://oilgasjournal.ru 

 

517 
 

HYDROTHERMODYNAMIC AND GEOMECHANICAL MODELING OF THE PROCESSES  
IN SATURATED GEOLOGICAL MEDIA 
 
Original article 
 

Equivalent radius for various flow regimes in numerical simulation 
of well inflow 
 
Anna E. Zhaglova , Akif I. Ibragimov, Ilya M. Indrupskiy, Ernest S. Zakirov 
Oil and Gas Research Institute, Russian Academy of Sciences, 3 Gubkina St., Moscow, 119333, Russia 

 
Abstract. Background. In numerical simulation of hydrocarbon field development, wells are represented 
as point sources/sinks. Consequently, the problem arises of calculating bottomhole pressure, which 
differs significantly from the pressure in the grid cell. To relate these pressures, analytical solutions are 
used, for example, those based on Peaceman’s formula. However, such solutions are derived for a quasi-
steady-state flow regime and require refinement for other flow regimes. Objective. To obtain 
Peaceman-type solutions for various flow regimes on square and rectangular computational grids. 
Methods. The approach is based on “matching” the global numerical solution with a local analytical 
solution in the cell containing the well (source/sink). Results. New formulas for the equivalent 
(Peaceman) radius are derived for the pseudosteady-state flow regime on square and rectangular grids, 
as well as for a boundary-dominated flow regime on a square grid. Conclusions. The necessity of using 
an adjusted equivalent radius formula in reservoir simulators for pseudosteady-state flow on regular 
nonsquare grids is demonstrated. The applicability of Peaceman’s steady-state equivalent radius 
formula is justified for square grids in both pseudosteady-state and boundary-dominated flow regimes. 
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