НОВЫЕ МЕТОДЫ И ТЕХНОЛОГИИ ИЗУЧЕНИЯ ГЕОЛОГИЧЕСКОЙ СРЕДЫ НЕФТЕГАЗОНОСНЫХ БАССЕЙНОВ

Оригинальная статья УДК 551.242.51 https://doi.org/10.29222/ipng.2078-5712.2024-15-4.art6

Геофлюидодинамические особенности нефтегазонакопления юго-западной части Прикаспийской впадины

Л.А. Абукова 🖂, М.Е. Селиверстова

Институт проблем нефти и газа РАН, Москва, Россия

Аннотация. Актуальность. Рассмотрены особенности геофлюидодинамического режима подсолевых отложений юго-западной части Прикаспийской впадины. Цель работы. Детализация представлений о геофлюидодинамических условиях нефтегазонакопления в пределах югозападной части Прикаспийской впадины. Объект исследования. Расположенные в подсолевом этаже юго-западной части Прикаспийской впадины месторождения углеводородов и площади. Материалы и методы. Сравнительный анализ данных пластовых температур и давлений, результатов опробования скважин, химических анализов вод и водорастворенных газов. Результаты. Обосновано развитие трех различных видов водонапорных режимов: инфильтрационного, элизионного, стагнационного, определяющих формирование углеводородных систем различного типа (проточных и автоклавных). Выводы. Учет геофлюидодинамических условий нефтегазонакопления может существенно уточнить положение перспективных зон при поиске промышленно значимых скоплений нефти и газа.

Ключевые слова: гидродинамическая стагнация, углеводородная система автоклавного типа, югозапад Прикаспийской впадины, нефтегазоносность

Финансирование: работа выполнена в рамках государственного задания ИПНГ РАН (тема № 122022800253-3).

Для цитирования: *Абукова Л.А., Селиверстова М.Е.* Геофлюидодинамические особенности нефтегазонакопления юго-западной части Прикаспийской впадины // Актуальные проблемы нефти и газа. 2024. Т. 15, № 4. С. 401–414. https://doi.org/10.29222/ipng.2078-5712.2024-15-4.art6

 (\mathbf{i})

 [☑] Абукова Лейла Азретовна, e-mail: abukova@ipng.ru
 © Абукова Л.А., Селиверстова М.Е., 2024

Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Введение

Хорошо известно, что Прикаспийская нефтегазоносная провинция уникальна по занимаемой площади, глубине осадочного выполнения, масштабам соляного галокинеза и углеводородным ресурсам. Кроме того, в последние годы выполнены исследования, показавшие, что геофлюидодинамические условия нефтегазообразования и нефтегазонакопления в ее пределах также отличаются редкими проявлениями, одним из которых является сопряжение углеводородных систем (УВС) различного типа: проточных И автоклавных (очаговых и блочных) [1]. Такое разнообразие генетических типов УВС, в свою очередь, обусловлено рядом факторов, один ИЗ них различия _ в геофлюидодинамических режимах нефтегазоносных территорий.

Представления о геофлюидодинамических режимах нефтегазообразования и нефтегазонакопления базируются на знаниях о водонапорных системах и эволюционируют от геологических признаков и следствий движения вод, нефтей и газов [2] до развития геофлюидодинамической концепции поисков нефтегазовых месторождений.

Геофлюидодинамическая поисковая концепция базируется на единстве закономерностей движения подземных вод, жидких И газообразных углеводородов **(УB)** генетически родственных, геохимически взаимообусловленных и легкоподвижных флюидов [3]. В этом плане Прикаспийская нефтегазоносная провинция представляет собой своеобразный исследовательский полигон изучения влияния геофлюидодина-мических режимов на типы формирующихся в поле их влияния углеводородных систем.

Цель настоящей работы – детализация представлений о геофлюидодинамических условиях нефтегазонакопления в пределах юго-западной части Прикаспийской впадины.

Материалы, методы, объекты исследований

Материалами исследования послужили опубликованные И фондовые данные пластовых температур И давлений, также полученные в процессе а гидрогеологического опробования поискои разведочных скважин вых И аналитических работ результаты химических анализов вод И водорастворенных LA3OB

Методы исследования: геологическое картирование, оценка гидродинамических потенциалов, расчет геохимических равновесий между подземными водами и породообразующими минералами.

Объекты исследования расположенные в подсолевом этаже юго-западной части Прикаспийской впадины (Астраханский свод, Каракульско-Смушковская зона дислокаций, Карасальская моноклиналь, Сарпинский прогиб) месторождения (Астраханское, углеводородов Ферсмановское и другие) и (площади Южно-Плодовитенская, Царынская, Совхозная, Халганская, Краснохудукская, Ашунская и другие).

Теоретическое обоснование проведенного анализа

Теория инфильтрационного и элизионного режимов нефтегазоносных разработана территорий детально [4], частности показана направленность в более высоких движения вод от гипсометрических отметок к низшим при инфильтрационном потоке и от более погруженных частей отрицательных тектонических структур к повышенным их бортовым частям - при элизионном. Также показано, что тектонические, геодинамические и литологические условия накладывают свое влияние на характер миграционных процессов флюидов Земли [5].

В последние годы стало очевидным, что при наличии в разрезе осадочного чехла доминантного флюидоупора (ДФ), разделяющего разрез на открытые ДΦ) (выше ДФ) И закрытые (ниже гидродинамические системы, в пределах последних формируется так называемый стаганционный водонапорный режим (от греч. stagnum – «стоячая вода»). Снижение под соленосными/долеритовыми покрышками скоростей движения флюидов было отмечено неоднократно. На этом гидродинамические основании условия с предельно низкими скоростями назывались

квазизастойными [2, 6]. В более поздних работах по региональной гидрогеологии верхних частей осадочного чехла введено понятие «стагнационных точек» как ближайшей окрестности минимума градиента гидродинамического потенциала [7, 8].

Стагнационный водонапорный режим проявляется на разных пространственных масштабах. Критерием стагнации водонапорного режима можно считать постоянство значений коэффициента аномалийности (негидростатичности) пластовых давлений с глубиной (рис. 1).

Рис. 1. Примеры регионального (а) и зонального (б) проявления стагнационного режима: а – статистика показателей давления в нефтегазоносных пластах по данным, построенным по 16552 нефтегазовым резервуарам мира; б – график изменения коэффициента аномалийности (негидростатичности) на Уренгойском вале

Fig. 1. Examples of regional (a) and zonal (b) manifestations of the stagnation regime: a – statistics of pressure indicators in oil- and gas-bearing formations according to the data plotted for 16,552 oil and gas reservoirs worldwide; b – graph of changes in the coefficient of anomaly (nonhydrostaticity) on the Urengoy swell

Источник: [9, 10]/Source: [9, 10]

Стагнационный водонапорный режим определяют по следующим признакам: (1)равенство поровых И пластовых давлений границах проявления на стагнационного режима (они же границы автоклавных углеводородных систем): (2) снижение градиентов пластовых давлений и плотности флюидов с глубиной; отсутствие региональной (3)И вертикальной гидродинамической зональности; (4) резкий сброс пластовых лавлений за границами проявления стагнационного гидродинамического режима (гидрозависимость динамический барьер); (5)направленности локальных внутрирезервуарных перетоков УΒ И воды от неоднородности литостатической суммирующего нагрузки фактора как внешней силовой (и весовой) нагрузки [3].

Принципиально важно отметить, что классический (проточный) геофлюидодинамический режим контролирует развитие классических углеводородных систем, В пределах которых механизм аккумуляции нефти И газа связан с дальней латеральной И вертикальной миграцией флюидов, как следствие нефтегазообразования очаги и зоны нефтегазонакопления разобщены. При стагнационном геофлюидодинамическом формируются режиме гидродинамически закрытые УВС автоклавного типа [3]. Особенность последних состоит в том, что в них отсутствует вторичная миграция, нефтегазонакопление происходит в том же резервуаре, что и генерация УB.

Ранее на подобный механизм (in-situ) формирования нефтегазогенерирующих систем указывалось К.П. Калицким, а также А.А. Трофимуком, которым их назвал «котлами-реакторами» [11]. С.П. Максимовым системы подобного типа классифицировались «автономные», как ними связывалось формирование С гигантских скоплений УВ на больших глубинах [12].

Отличительными чертами автоклавных УВС являются: (1)единство функций геологической среды как нефтегазопродуцирующей И нефтегазолокализующей толщи; (2) крайне незначительные масштабы проявлений процессов вторичной миграции УΒ из-за отсутствия регионально выдержанных дренажных слоев; (3) дискретность актов импульсной разгрузки жидких И газообразных УВ в периоды тектонических регрессионных синхронная движений; (4) компенсация дренированных углеводородов из внешней нефтегазоматеринской среды до условия выравнивания порового давления извне пластового И изнутри границе на автоклавной **YBC**; (5)прерывистость (многоактность) хода катагенетических превращений органического вещества (OB) И снижение co временем глубиной И темпа катагенетических OB превращений продуктов внутрирезервуарной катагенной флюидогенерации из-за отсутствия возможностей их гидродинамической оттока В условиях стагнации; (6) приуроченность скоплений УΒ к локализованным минимумам гидродинамического потенциала, которые формируются независимо от структурного фактора; (7) резервуары с облегченным весом вышележащей толни обретают при прочих благоприятных факторах способность аккумулировать и сохранять в себе залежи УВ [1, 3].

Региональные отличия водонапорных режимов в пределах юго-запада Прикаспийской впадины с их связь с углеводородными системами

Несмотря скудность на данных, территории исследования пределах в выделяются области распространения разных водонапорных режимов, установленные по отдельным гидрогидрогеохимическим динамическим И По Зингера, признакам. мнению A.C. инфильтрационные воды имеют крайне ограниченное распространение [13]. Судя по гидрохимическим данным, они могут присутствовать на северном склоне вала также Карпинского, а в пределах Каракульско-Смушковской зоны дислокаций, где водорастворенные газы содержат углекислый газ (а в отдельных случаях и

азот) в высоких концентрациях. Здесь важно подчеркнуть, что маломинерализованные воды могут иметь не только современное инфильтрационное происхождение, но и представлять собой сохранившиеся образцы древнеинфильтрационных вод.

Элизионный водообмен развит в подсолевом этаже Карасальской моноклинали и Сарпинского прогиба. Химический состав представлен, основном, этих вол в рассолами, минерализация крепкими глубиной, которых снижается с что говорит о формировании гидрохимической [14, 15]. Последняя снижает инверсии интенсивность направлению свою по от Карасальской моноклинали (рис. 2а) к Сарпинскому прогибу (рис. 2б) и далее юго-западному склону Астраханского к свода (рис. 2в).

Рис. 2. Проявление инверсии в пределах юго-запада Прикаспийской впадины: а — Карасальская моноклиналь; б — Сарпинский прогиб;

в – Астраханский свод

в Астраханский свод

Fig. 2. Manifestation of inversion within the southwest of the Caspian depression:

a - Karasal monocline;

b – Sarpinsky trough;

c – Astrakhan arch

В зоне влияния элизионного водообмена значим процесс геохимического взаимодействия пород И вод. Причем в него вступают как минерализованные (нередко рассольные) растворы, так и маломинерализованные поровые рыхло связанные воды и органогенные воды (как продукт катагенной флюидогенерации преобразовании органического при вещества пород под действием термофактора). барического Нами выполнена первая оценка геохимической активности пластовых (седиментационных) вод югозапада Прикаспийской впадины раздельно для пластовых и конденсационных вод (на примере Астраханского свода).

В табл. 1 сведены данные о степени насыщения пластовых вод карбонатом кальция. Как видно из приведенных данных, при наличии общей тенденции перенасыщенности вод карбонатом кальция существуют различия между геохимической активностью пермских вод И каменноугольных отложений. Наименьшее значение степени насыщения вод СаСО3 характерно для вод пермских отложений Каракульской площади (Карасальская моноклиналь). Сравнение степени насыщения вод более погруженных каменноугольных отложений CaCO₃ выявляет зависимость количественных значений этого параметра со степенью гидродинамической закрытости территории, которая, В свою очередь, возрастает от Карасальской ступени к Сарпинскому прогибу И далее к юго-западной Астраханского части свода и ee окрестностей.

Табл. 1. Характеристика подземных вод подсолевых отложений юго-западной части Прикаспийской впадины

Table 1. Characteristics of the groundwater of the subsalt sediments of the southwestern part of the Caspian depression

Площадь, № скв.	Возраст	Интервал перфорации, м	Минерализа- ция, rCl мг/дм ³		(r Cl ¹⁻ + r SO4 ²⁻) / (r HCO ₃ ¹⁻ + CO3 ²⁻) (ИЛС)	Степень насыщения воды карбонатом кальция (СаСО2)*		
Карасальская моноклиналь (с преимущественно элизионным водонапорным режимом)								
Кануковская, 101	P1	2747–2758	216700,1	0,84	3125,03	0,05		
Карасальская, 1	P1	2419–2535	233764,9	0,86	807,38	0,85		
Южно-Плодовитинская, 3	C2	4803–4792	181769,6	0,79	285,24	1,28		
Сарпинский прогиб (с элизионным водонапорным режимом)								
Чкаловская, 1	P1	4600	260281,3	0,91	1123,48	0,51		
Царынская	P1	3564–3580	232688,5	0,7	1130,8	0,96		
Краснохудукская, 1	C1	3590–3630	57704,8	0,65	32,77	1,49		
Юго-запад Астраханского свода и прилегающая часть Каракульско-Смушковской зона (со стагнационным водонапорным режимом)								
Южно-Астраханская, 10	C ₂	4448–4423	69974,0	0,95	31,98	0,96		
Астраханская, 1	C ₂	4180–4158	82240,1	0,94	42,67	1,06		
Долгожданная, 2	C ₂	4196-4237	110191,6	0,89	237,49	1,11		
Ашунская, 1	C ₂	3013-3620	153111,0	0,88	78,62	1,44		

*Если степень насыщения вод солями < 0 — воды недонасыщены; = 0 — наступает геохимическое равновесие между водой и минералом; > 0 — соли выпадают из воды и кольматируют пустотное пространство.

В каменноугольных отложениях свое влияние на химизм вод И их взаимоотношения породообразующими с оказывают конденсационные минералами которые являются маломиневоды, рализованными и обладают повышенной

(табл. 2). агрессивностью Как видно из приведенных данных, конденсационные воды оказывают В подавляющем большинстве случаев растворяющее воздействие породообразующие на минералы.

Табл. 2. Значения степени насыщения конденсационных вод карбонатом кальция (на примере Астраханского нефтегазоконденсатного месторождения)

Table 2. Values of the degree of condensation water saturation with calcium carbonat	e
(the case of the Astrakhan oil and gas condensate field)	

№ скважины	Интервал опробования, м	Дата опробования	Минерализация, мг/дм ³	Степень насыщения вод карбонатом кальция
73	4012–3980	31.08.1985	780,79	-1,285
76	3919–3844	12.02.1987	4355,00	0,201
8щ	3936–3915	16.10.1980	6841.44	-0,321
8щ	-«	18.10.1980	8996,76	-0,476
8щ	-«	21.10.1980	3471,95	-0,869
58	3980–3940 3934–3882	14.09.1984	8893,94	0,280
58	-«	16.09.1984	6405,89	-0,224
58	3980–3940	16.09.1984	5278,14	-0,173
52	4033–3946	28.02.1987	4111,00	0,161
83	3919–4028	03.07.1987	1412,00	-0,550
83	3952–4040	08.07.1987	890,00	-0,657

Очевидно, что образцы конденсационной подавляющем воды В большинстве случаев агрессивны карбонатам, что И определяет к ИХ возможность влиять на пористость проницаемость (и отчасти) породколлекторов в пределах 30H (Астраханское, их распространения Ферсмановское месторождения И дp. продуктивные площади).

В гидродинамическом отношении существуют различия между областями развития инфильтрационного, элизионного и стагнационного водообмена. На рис. За показан переход на глубине от инфильтрационного к элизионному режиму, а на больших глубинах – к стагнационному. Особенность стагнационного режима – снижение (резкое снижение градиента) пластового давления (практически его обнуление) более детально иллюстрировано на рис. 3б.

Интерес также представляет значений анализ гидродинамических потенциалов, подсчитанных по методике М. Хаберта [16]. Как следует из полученных результатов (табл. 3) наиболее высоким потенциалом обладают свободные углеводороды, обособленные от гидросферы сохранившиеся И под соленосной толщей под высоким давлением.

Гидродинамические режимы: о – инфильтрационный, о – элизионный, о - стагнационный а/а б/b

Рис. 3. Изменение пластового давления с глубиной по данным скважин: а – юго-западной части Прикаспийской впадины; б – Астраханского свода

Fig. 3. Variation of reservoir pressure with depth based on well data:
 a – southwestern part of the Caspian depression;
 b – Astrakhan arch

Табл. 3. Значения гидродинамических потенциалов площадей юго-западной части Прикаспийской впадины

 Table 3. Values of hydrodynamic capacities of the areas of the southwestern part of the Caspian depression

 Плошаль
 Nº
 Глубина
 Возраст
 Тип
 Раз
 Потенциал

Площадь	№ скв.	Глубина точки замера,	Возраст	Тип флюида	Р _{пл.} , МПа	Потенциал в., н. или г.,
		м				M²/C²
1	2	3	4	5	6	7
Астраханская	42	3950,0	C2	Г	60,80	86630,38
Астраханская	25	4040,0	C2	Г	61,29	85905,37
Астраханская	27	3975,0	С	Г	60,56	85785,36
Астраханская	17	4020,0	C2	Г	60,84	85313,32
Астраханская	45	4030,0	C ₂	Г	60,87	85223,58
Астраханская	5	4022,5	C2	г	59,46	82665,76
Астраханская	42	4057,5	C2	Г	58,40	79610,95
Астраханская	8	3925,5	С	Г	55,80	77135,81
Астраханская	32	4007,0	C ₂	Г	52,82	69259,12
Астраханская	72	4147,0	C ₂	В	62,50	52746,87

Продолжение табл. 3

Table 3 continued

1	2	3	4	5	6	7
Южно-Астраханская	10	4400,0	C ₂	В	48,60	40415,20
Краснохудукская	1	3297,0	C1	В	41,20	38707,39
Смушковская	3	3239,0	C2	В	35,50	34283,67
Ашунская	2	3730,0	С	В	38,40	34699,84
Восточно-Шарнутская	1	2883,0	Р	В	31,70	32999,21
Чкаловская	1	4600,0	P1	В	87,30	71295,00
Южно-Плодовитинская	3	4600,0	C ₂	В	47,00	38877,25
Царынская	2	3572,0	P1	В	38,20	35242,11
Карасальская	1	2896,0	P ₁	В	30,70	32170,79
Кануковская	101	2740,0	P ₁	В	28,50	30973,88

По площадям, где в исследованных интервалах получена вода, потенциалы закономерно имеют более низкие значения. С учетом возможных погрешностей в определении исходных параметров (прежде всего плотности флюида (в виде водоуглеводородной смеси), а также емкостных условий отдельных площадей, можно считать район площадей Смушковкаязоной пьезоминимума Ашунская для флюидов, генерируемых в среднекаменнонижележащих угольных И отложениях Астраханского свода. Дополнительным аргументов для признания этого региона как высокоперспективного служит факт открытия в ближайшем расположении Ферсмановского газоконденсатного месторождения (верхний карбон, гл. 5417-5645 м).

В дальнейшем предстоит уточнить положение зон нефтегазонакопления. в пределах Карасальской моноклинали. На Кануковской площади (скв. 101) в пермских отложениях расчетным образом установлено самое низкое значение гидродинамического потенциала, при этом газонасыщенность вод повышенная (порядка 1,3–1,7 м³/м³), газы бессульфатные, а содержание тяжелых УВ выше среднего [14]. Обнаруженные ранее притоки высокоминерализованных вод и нефти на Урманцевской и Южно-Плодовитенской площадях [15] вместе с данными о Кануковской площади могут свидетельствовать о высоких перспективах не только пермских, но и нижележащих отложений.

Кроме площадей, по которым проанализированы геофлюидодинамические характеристики, стоит указать на зону, расположенную вдоль северной границы Каракульско-Смушковской зоны. Ha основании данных, опубликованных ранее [13–15], выделяются протяженные области с повышенными концентрациями углекислого газа: в пределах Каракульской площади (скв. 1, инт. 4158-4268) - 68%, Светлошаринской (скв. 2) – 54,4%. Это свидетельствует о глубокой бактериальной переработке свободных УВ и/или крекинге последних [15] условиях более погруженных В горизонтов, расположенных вдоль северной границы Каракульско-Смушковской зоны. Наибольший интерес представляет исследование геофлюидодинамических условий площадях Кануковская, Чкаловская, на Краснохудукская, Смушковская.

Выводы

Геофлюидодинамическая неоднокаменноугольно-нижнепермских родность нефтегазогенерирующих толщ юго-западной части Прикаспийской впадины выражена в развитии трех замещающих друг друга по глубине и площади геофлюидодинамических режимов – инфильтрационного, элизионного и стагнационого. Для них выявляются в интенсивности отличия проявления гидрохимической инверсии геологической среды, при этом впервые стагнационного режима для показано концентраций выравнивание водорастворенных минеральных веществ с глубиной. Такая особенность гидрохимического поля вполне соответствует снижению градиентов пластового давления с глубиной, соответственно уменьшению градиентов плотности флюидов для закрытых флюидодинамических условий.

На основании расчетов геофлюидодинамических потенциалов по ряду площадей, таких как Чкаловская, Кануковская, Краснохудукская, Смушковская, выделены районы, которые могут представлять научно-практический интерес для постановки геологоразведочных работ.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список источников

1. Абукова Л.А., Волож Ю.А. Флюидодинамика глубокопогруженных зон нефтегазонакопления осадочных бассейнов // Геология и геофизика. 2021. Т. 62, № 8. С. 1069–1080. https://doi.org/10.15372/GiG2021132

2. *Валуконис Г.Ю., Ходьков А.Е.* Геологические закономерности движения подземных вод, нефтей и газов. Л.: Изд-во Ленинградского университета, 1973. 304 с.

3. Волож Ю.А., Абукова Л.А., Рыбальченко В.В., Меркулов О.И. Формирование месторождений нефти и газа в глубокопогруженных углеводородных системах: на пути к универсальной поисковой концепции // Геотектоника. 2022. № 5. С. 27–49. https://doi.org/10.31857/S0016853X22050095

4. Вагин С.Б., Лобусев М.А., Антипова Ю.А. Выявление особенностей и основных закономерностей распределения гидрогеологических параметров отдельных водоносных комплексов территории Гыданского полуострова // Территория Нефтегаз. 2017. № 10. С. 32–36.

5. *Матусевич В.М., Курчиков А.Р., Рыльков А.В.* Геофлюидальные системы Западно-Сибирского мегабассейна как фактор массопереноса вещества и энергий в 4-х мерном пространстве // Известия высших учебных заведений. Нефть и газ. 2001. № 2(26). С. 4–13.

6. *Мязина Н.Г.* Вертикальная гидрогеохимическая зональность поземных вод Прикаспийской впадины // Геология, география и глобальная энергия. 2013. № 4(51). С. 59–65.

7. *Tóth J.* Gravitational Systems of Groundwater Flow: Theory, Evaluation and Utilization. Cambridge, UK: Cambridge University Press, 2009. 297 p. https://doi.org/10.1017/CBO9780511576546

8. *Jiang X.W., Wang X.S., Wan L., Ge S.* An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity // Water Resources Research. 2011. Vol. 47, No. 1. P. W01512. https://doi.org/10.1029/2010WR009346

9. *Pang X.-Q., Jia C.-Z., Wang W.-Y.* Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins // Petroleum Science. 2015. Vol. 12, No. 1. P. 1–53. https://doi.org/10.1007/s12182-015-0014-0

10. Гуревич А.Е., Крайчик М.С., Батыгина Н.Б. и др. Давление пластовых флюидов. Л.: Недра, 1987. 223 с.

11. *Трофимук А.А., Молчанов В.И., Параев В.В.* Особенности геодинамических обстановок формирования гигантских месторождений нефти и газа // Геология и геофизика. 1998. Т. 39, № 5. С. 673–682.

12. *Максимов С.П., Дикенштейн Г.Х., Лоджевская М.И.* Формирование и размещение залежей нефти и газа на больших глубинах. М.: Недра, 1984. 287 с.

13. Зингер А.С., Котровский В.В. Гидрогеологические условия водонапорных систем западной части Прикаспийской впадины. Саратов: Изд-во Саратовского университета, 1979. 158 с.

14. *Гирин Ю Г*. Гидрологические условия нефтегазоносности подсолевых отложений югозападной части Прикаспийской впадины. Автореф. дис. ... канд. геол.-минерал. наук. Ставрополь, 1998. 23 с.

15. *Ильченко В.П.* Нефтегазовая гидрогеология подсолевых отложений Прикаспийской впадины / Под ред. Е.В. Стадника. М.: Недра, 1998. 288 с.

16. *Hubbert M.R.* Entrapment of petroleum under hydrodynamic condition // AAPG Bulletin. 1953. Vol. 37, No. 8. P. 954–1026. https://doi.org/10.1306/5ceadd61-16bb-11d7-8645000102c1865d

Информация об авторах

Лейла Азретовна Абукова – д.г.-м.н., заведующая лабораторией, главный научный сотрудник, Институт проблем нефти и газа РАН, Москва, Россия; SPIN-код: 4282-3946, https://orcid.org/0000-0002-8984-7907; e-mail: abukova@ipng.ru

Маргарита Евгеньевна Селиверстова – младший научный сотрудник, Институт проблем нефти и газа РАН, Москва, Россия; e-mail: seliverstova@ipng.ru

Поступила в редакцию 20.11.2024

NEW METHODS AND TECHNOLOGIES OF STUDYING THE GEOLOGICAL ENVIRONMENT OF OIL AND GAS BASINS

Original article https://doi.org/10.29222/ipng.2078-5712.2024-15-4.art6

Geofluid dynamic features of oil and gas accumulation in the southwestern part of the Caspian depression

L.A. Abukova 🖂, M.E. Seliverstova

Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, Russia

Abstract. *Background*. The article considers the features of the geofluid dynamic regime of subsalt sediments of the southwestern part of the Caspian depression. *Objective*. To refine the understanding of geofluid dynamic conditions of oil and gas accumulation within the southwestern part of the Caspian depression. *Object of study*. Hydrocarbon fields and areas located in the subsalt level of the southwestern part of the Caspian depression. *Materials and methods*. Comparative analysis of reservoir temperature and pressure data and the results of well sampling and chemical analyses of water and water-dissolved gases. *Results*. We substantiated the development of three different types of water-drive regimes – infiltration, elision, stagnation – determining the formation of hydrocarbon systems of different types (flowing and autoclave). *Conclusions*. Accounting of geofluid dynamic conditions of oil and gas accumulation significantly clarify the position of potentially productive zones when searching for commercially significant accumulations of oil and gas.

Keywords: hydrodynamic stagnation, autoclave-type hydrocarbon system, southwest of the Caspian depression, oil and gas content

Funding: the work was funded by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. 122022800253-3).

For citation: Abukova L.A., Seliverstova M.E. Geofluid dynamic features of oil and gas accumulation in the southwestern part of the Caspian depression. *Actual Problems of Oil and Gas*. 2024. Vol. 15, No. 4. P. 401–414. (In Russ.). https://doi.org/10.29222/ipng.2078-5712.2024-15-4.art6

 (\mathbf{i})

C Leyla A. Abukova, e-mail: abukova@ipng.ru C Abukova L.A., Seliverstova M.E., 2024

The content is available under Creative Commons Attribution 4.0 License.

Conflict of interests

The authors declare no conflict of interests.

References

1. Abukova L.A., Volozh Yu.A. Fluid geodynamics of deeply buried zones of oil and gas accumulation in sedimentary basins. *Russian Geology and Geophysics*. 2021. Vol. 62, No. 8. P. 878–886. https://doi.org/10.2113/RGG20214348

2. Valukonis G.Yu., Khodkov A.E. Geological regularities of groundwater, oil and gas movement. Leningrad: Leningrad University, 1973. 304 p. (In Russ.).

3. Volozh Yu.A., Abukova L.A., Rybalchenko V.V., Merkulov O.I. Formation of oil and gas fields in deep hydrocarbon systems: Outline of a universal search concept. *Geotectonics*. 2022. Vol. 56, No. 5. P. 586–606. https://doi.org/10.1134/S0016852122050090

4. Vagin S.B., Lobusev M.A., Antipova Yu.A. Identification of the features and main regularities in the distribution of hydrogeological parameters of individual aquifers in the Gydan Peninsula. *Territorija Neftegaz.* 2017. No. 10. P. 32–36. (In Russ.).

5. Matusevich V.M., Kurchikov A.R., Rylkov A.V. Geofluid systems of the West Siberian megabasin as a factor of mass transfer of matter and energy in 4-dimensional space. *Oil and Gas Studies*. 2001. No. 2(26). P. 4–16. (In Russ.).

6. Myazina N.G. Vertical hydrogeochemical zoning of underground water of Caspian basin. *Geology, Geography and Global Energy.* No. 4(51). P. 59–65. (In Russ.).

7. Tóth J. *Gravitational Systems of Groundwater Flow: Theory, Evaluation and Utilization.* Cambridge, UK: Cambridge University Press, 2009. 297 p. https://doi.org/10.1017/CBO9780511576546

8. Jiang X.W., Wang X.S., Wan L., Ge S. An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity. *Water Resources Research*. 2011. Vol. 47, No. 1. P. W01512. https://doi.org/10.1029/2010WR009346

9. Pang X.-Q., Jia C.-Z., Wang W.-Y. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. *Petroleum Science*. 2015. Vol. 12, No. 1. P. 1–53. https://doi.org/10.1007/s12182-015-0014-0

10. Gurevich A.E., Kraichik M.S., Batygina N.B. et al. *Pressure of Reservoir Fluids*. Moscow: Nedra, 1987. 223 p. (In Russ.).

11. Trofimuk A.A., Molchanov V.I., Paraev V.V. Peculiarities of geodynamic settings of formation of gigantic petroleum deposits. *Geologiya i geofizika*. 1998. Vol. 39, No. 5. P. 673–682. (In Russ.).

12. Maksimov S.P., Dikenshtein G.Kh., Lodzhevskaya M.I. Formation and Location of Oil and Gas Deposits at Great Depths. Moscow: Nedra, 1984. 287 p. (In Russ.).

13. Zinger A.S., Kotrovskiy V.V. *Hydrogeologic Conditions of Water-Drive Systems in the Western Part of the Caspian Depression*. Saratov: Saratov University, 1979. 158 p. (In Russ.).

14. Girin Yu.G. Hydrological conditions of oil and gas content of subsalt sediments of the southwestern part of the Caspian depression. Cand. Sci. diss. abstr. Stavropol, 1998. 23 p. (In Russ.).

15. Ilchenko V.P. *Oil and Gas Hydrogeology of Subsalt Deposits of the Caspian Basin*, ed. by E.V. Stadnik. Moscow: Nedra, 1998. 288 p. (In Russ.).

16. Hubbert M.R. Entrapment of petroleum under hydrodynamic condition. *AAPG Bulletin*. 1953. Vol. 37, No. 8. P. 954–1026. https://doi.org/10.1306/5ceadd61-16bb-11d7-8645000102c1865d

Information about the authors

Leyla A. Abukova – Dr. Sci. (Geol.-Min.), Head of Laboratory, Chief Researcher, Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, Russia; https://orcid.org/0000-0002-8984-7907; e-mail: abukova@ipng.ru

Margarita E. Seliverstova – Junior Researcher, Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, Russia; e-mail: seliverstova@ipng.ru

Received 20.11.2024