ФРАКТАЛЬНАЯ ТЕОРИЯ ВЯЗКОСТИ ДЛЯ СКОРОСТЕЙ СДВИГА, БЛИЗКИХ К НУЛЮ

В.И. Лесин, С.В. Лесин*, ИПНГ РАН, РГУНГ им. И.М. Губкина*, e-mail: lesinvictor@yandex.ru

Введение

В работах [1, 2] предложена фрактальная теория вязкости неньютоновских жидких коллоидных растворов. Вытекающая из теории зависимость вязкости от концентрации и физико-химических характеристик агрегатов коллоидных частиц фрактального строения была подтверждена экспериментально на ряде типичных коллоидных растворов, в том числе на нефти, нефтепродуктах и буровых растворах. Однако изложение теории было ограничено большими скоростями сдвига -G = dV/dx, при которых гидродинамические силы вносят основной вклад в процессы отрыва и присоединения коллоидных частиц к фрактальным агрегатам. В данной работе продолжено развитие фрактальной теории для скоростей сдвига, близких к нулю, когда вклад гидродинамических сил сравним со вкладом теплового движения частиц. Исследование этой области особенно важно для условий, когда средние скорости фильтрации флюидов в пласте составляют величины порядка 10^{-5} см·с⁻¹, а скорости сдвига близки к нулевым значениям.

Теория и эксперимент

В [1, 2] получена формула, связывающая вязкость η (Па·с) при данной скорости сдвига G с концентрацией n (см⁻³) и размерностью поверхности фрактальных агрегатов D:

$$\eta = \eta_{\infty} \left(1 + K n a^{3} (R/a)^{D+1} \right). \tag{1}$$

Здесь а (см) – средний радиус коллоидной частицы, R (см) – средний инерциальный радиус фрактального агрегата при данной скорости сдвига G (с $^{-1}$), η_{∞} – вязкость при бесконечной скорости сдвига (что соответствует полностью разрушенным фрактальным агрегатам), D – размерность поверхности фрактального агрегата ($2 \le D \le 3$, D = 2 для сферы), K – безразмерный коэффициент, учитывающий форму агрегата. Формула (1) приведена с учетом авторских дополнений, не меняющих ее общий вид, но учитывающих сохранение размерности.

Радиус фрактального агрегата связан со скоростью сдвига G соотношением [3, 4]:

$$R = ka(G_0/G)^p, (2)$$

где k – безразмерный параметр.

Путем подстановки (2) в (1) получаем зависимость

$$\eta = \eta_{\infty} \left(1 + k^p K n a^3 (G_0 / G)^{p(D+1)} \right), \tag{3}$$

где G_0 — параметр, характеризующий силу парного притяжения коллоидных частиц в агрегате, p — параметр, характеризующий разрушение агрегата в данном диапазоне значений G. Анализ работ, посвященных определению p путем численных экспериментов, показал, что эта величина сложным образом связана со многими параметрами коллоидной системы, в том числе с потенциалом взаимодействия частиц, температурой и механизмами формирования — распада фрактальных агрегатов.

Для жестких сферических частиц формула (1) совпадает с формулой Эйнштейна, когда R= а и, следовательно, коэффициент формы $K=15/4\pi$.

Полагая, что концентрация n — величина постоянная, и принимая $k^p K n a^3 G_o^{p(D+1)} = B$, а $\alpha = p(D+1)$, получаем полуэмпирическую формулу, предложенную в [5]:

$$\eta = \eta_{\infty} \left(1 + BG^{-\alpha} \right). \tag{4}$$

В формуле (4) показатель степени α зависит как от фрактальной размерности площади агрегата коллоидных частиц, так и от параметров взаимодействия коллоидных частиц, отражающихся в величине p.

Формула (4) совпадает с формулой Оствальда $\eta \sim G^{-\alpha}$ для области значений G, когда $BG^{-\alpha}>>1$ и $\alpha=p(D+1)={\rm const.}$

Широко известные и экспериментально подтвержденные зависимости являются частными случаями формулы (1) и вытекающей из нее формулы (4), где показатель α имеет ясный физический смысл и может быть определен в не зависящих от измерений вязкости экспериментах.

Зависимость (4) спрямляется в координатах ${\rm Ln}(\eta/\eta_{\infty}-1),~{\rm Ln}G$ путем подбора величины $\eta_{\infty}.$

В работе [6] подтверждено, что фрактальная модель и формула (4) применимы и для случая течения жидкости, содержащей фрактальные агрегаты в плоских щелях высотой 1,5 и 4 мкм. Этот экспериментально установленный факт позволяет применять формулу (4) и для моделирования движения нефти и воды в реальных условиях пласта.

Рис. 1 иллюстрирует подход к расчету зависимости вязкости от скорости сдвига. Поверхность фрактального агрегата движется в соответствии с градиентом распределения скоростей во вмещающей жидкости, и значения скоростей линий тока V_x сохраняют свои

значения вплоть до границ фрактального агрегата. Это приводит к тому, что агрегат вращается вокруг своего центра инерции с частотой G, а каждая точка поверхности радиуса R вращается относительно центра инерции со скоростью GR. При этом горизонтальная составляющая скорости точки на поверхности совпадает со скоростью вмещающей жидкости V_x .

Действительно, обозначая величиной θ угол, который составляет вектор, направленный из центра инерции к поверхности агрегата, с линией тока, проходящей через центр масс, получаем горизонтальную составляющую скорости поверхности в этой точке, равную (см. рис. 1):

$$V(\theta) = V_{ci} + GR\sin\theta , \qquad (5)$$

где V_{ci} – скорость центра инерции агрегата.

Горизонтальная скорость жидкости на этом расстоянии $R\sin\theta$ от линии тока жидкости, проходящей через центр инерции, также равна $V_x = V_{ci} + GR\sin\theta$. Следовательно, все точки поверхности агрегата движутся со скоростями, равными скоростям течения вмещающей жидкости, и вращение агрегата позволяет сохранять градиент скорости.

Очевидно, что величина вязкости в рамках предложенной модели стремится к постоянной конечной величине $\eta(0)$ при $G \to 0$. Это связано с тем, что гидродинамическое напряжение $S \sim GR$ уменьшается с уменьшением G, поэтому начиная с некоторого значения $G < G_{\min}$ силы гидродинамического отрыва становятся меньше сил взаимного притяжения коллоидных частиц $F = Aa/12h^2$ (см., например, [7]). Здесь A — константа Гамакера, равная по порядку величины kT при комнатной температуре, h — расстояние между поверхностями частиц. Из вышесказанного следует, что при $G < G_{\min}$ вязкость η не будет зависеть от G, поскольку в этих условиях агрегаты можно рассматривать как твердые и недеформируемые частицы.

Оценим величину G_{\min} исходя из термодинамического подхода. Согласно этому подходу, G_{\min} соответствует такому градиенту скорости, который создает вращение агрегата с энергией, меньшей, чем тепловая энергия, приходящаяся на эту степень свободы, -kT/2. Кинетическая энергия вращения агрегата с частотой G_{\min} равна $MR^2(2\pi G_{\min})^2$, где M – масса фрактального агрегата. Следовательно,

$$MR^2(2\pi G_{\min})^2/2 < kT/2$$
, (6)

откуда

$$G_{\min} < (kT/4\pi^2 MR^2)^{0.5} \,. \tag{7}$$

Принимая $R = 10^{-3}$ см, $M = 10^{-8}$ г, получаем оценку $G_{\min} < 2 \cdot 10^{-1}$ с⁻¹.

На рис. 2 показан пример зависимости вязкости коллоидного раствора полимера от скорости сдвига вплоть до очень малых значений. Зависимость $\mathrm{Ln}(\eta/\eta_\infty-1)$ от $\mathrm{Ln}G$ снята при комнатной температуре для 6%-ного раствора ксантогената целлюлозы в воде. Молекулярный вес ксантогената 5000. Величина вязкости при $G\to 0$ стремится к конечному значению η ($G\approx 0$) $\approx 1,7$ Па·с. Наклон α оценивается в области, где 0,1 с⁻¹ < G < 0,8 с⁻¹, как $\alpha\approx 0,025$. С учетом общей тенденции снижения α при уменьшении G можно полагать, что $\alpha=0$ в этой области значений G. По мере роста G величина растет и составляет $\alpha=0,025$; 0,27; 0,36; 0,6. При η ($G\approx 0$) = 1,7 Па·с, $\eta_\infty=0,015$ Па·с, B=100.

Следует отметить, что измерение вязкости представляет собой процедуру определения силы τ , которая передается от вращающегося цилиндра на неподвижный цилиндр при данной скорости сдвига G. При $G \to 0$ сила $\tau \to 0$, и для определения $\eta = G/\tau$ необходимо точно определять τ , когда время измерения может составлять несколько часов. Очевидно, что точность измерения η в таких условиях не может быть высокой из-за малости величины τ .

Отметим, что величина α может быть отрицательной – α < 0 для малых величин G, что, в соответствии с формулой (4), соответствует росту вязкости с ростом G. Это связано с наличием потенциального барьера взаимодействия коллоидных электрически заряженных частиц и электрически заряженных фрактальных агрегатов, что препятствует присоединению коллоидных частиц к фрактальным агрегатам. В этом случае при росте G происходит преодоление потенциального барьера высотой U и, следовательно, дополнительное присоединение коллоидных частиц к фрактальным агрегатам за счет роста скорости соударения на величину $GR\cos\theta$ (см. рис. 1). Полагая $U=4,5\cdot 10^{-14}$ эрг (что составляет величину порядка kT при комнатной температуре), оценим кинетическую энергию столкновения как $m_0(RG)^2/2=4,5\cdot 10^{-14}$ эрг.

Принимая массу частицы $m_{\rm o}=10^{\text{-}12}$ г, радиус $R=10^{\text{-}2}$ см, $\theta=0$, получаем оценку $G_{\rm max}\approx 3~{\rm c}^{\text{-}1}$.

Очевидно, что $G_{\text{мах}}$ представляет собой оценку скорости вращения, после превышения которой гидродинамические силы начнут отрывать коллоидные частицы от агрегата и, следовательно, величина α станет положительной.

На рис. 3 показана зависимость $\text{Ln}(\eta/\eta_{\infty}-1)$ от LnG, снятая при комнатной температуре для образца нефти, $\eta(G\to 0)\approx 25$ мПа·с, $\eta_{\infty}=0.5$ мПа·с. Зависимость представлена в виде ломаной с наклонами участков $\alpha=-1.35$ $(0.7\leq G\leq 1\text{ c}^{-1});\ 0.43$ $(1\leq G\leq 8\text{ c}^{-1});\ 1.06$ $(8\leq G\leq 25\text{ c}^{-1});\ 2.05$ $(25\leq G\leq 60\text{ c}^{-1});\ 6.25$ $(75\leq G\leq 60\text{ c}^{-1}).$

Во всех случаях величина $p(D+1) = \alpha \to 0$ при $G \to 0$, из чего следует, что $p \to 0$ при $G \to 0$. Такая зависимость оправданна, поскольку это означает, что со снижением гидродинамического напряжения снижаются скорости отрыва фрагментов и деформации фрактальных агрегатов.

Обработка раствора акустическими колебаниями также может приводить к отрыву фрагментов от фрактальных агрегатов, поскольку колебания сопровождаются возвратно-поступательным, ускоренным движением жидкости и возникновением переменной скорости сдвига с амплитудой $G_{\rm ac}$, что может приводить к разрушению фрактальных агрегатов и снижению вязкости нефти.

Отметим, что если жидкость, например нефть, подвергается действию колебаний давления, которые сопровождаются незначительными колебаниями $G_{\rm ac}$, то, как следует из вышеприведенного анализа, такое воздействие может сопровождаться как ростом вязкости нефти, так и отсутствием изменений вязкости. Величина $G_{\rm ac}$ должна быть достаточно большой для достижения эффекта снижения вязкости.

Отметим, что величина $BG^{-\alpha}$ в формуле (4) меняется непрерывно, в то время как величина α меняется скачкообразно и остается постоянной в пределах некоторой области значений G.

Выводы

Фрактальная модель вязкости предсказывает конечные значения вязкости в области скоростей сдвига, близких к нулю, что соответствует известным экспериментальным данным. Показано, что в этой области рост скорости сдвига может сопровождаться ростом вязкости. Теоретические положения фрактальной модели подтверждены экспериментальными данными, полученными для нефти и буровых растворов.

ЛИТЕРАТУРА

- 1. *Лесин В.И.* Фрактальная формула зависимости вязкости неньютоновской жидкости от градиента скорости. // Георесурсы, геоэнергетика, геополитика. 2011. Вып. 1(3). Режим доступа: http://www.oilgasjournal.ru
- 2. Lesin V.I., Koksharov Yu.A., Khomutov G.B. Viscosity of liquid suspensions with fractal aggregates: magnetic nanoparticles in petroleum colloidal structures. // Colloids and surfaces A: Physicochem. Eng. Aspects. 2011. Vol. 392. P. 88–94.
- 3. *Sonntag R.C., Russel W.B.* Structure and breakup of flocs subjected to fluid stresses: I–II. Shear experiments // J. Colloid. Interface Sci. 1986. Vol. 113. P. 399–413.
- 4. *Potanin A.I.*, *Verkhusha V.V.*, *Muller V.M.* Disaggregation of particles with biospecific interactions in shear flow // J. Colloid. Interface Sci. 1997. Vol. 188. P. 251–256.
- 5. *Лесин В.И.*, *Лесин С.И*. О физической природе степенной зависимости вязкости буровых суспензий от скорости сдвига // Нефтепромысловое дело. 2004. № 1. С. 37–39.
- 6. *Шатагина Е.А.*, *Шатагина А.А.*, *Шатагин И.А.* Фрактальная структура ЭЖК слоев н-тетрадекана // Молодой ученый. 2011. Т. 1, № 8. С. 12–16.
- 7. Долгоносов Б.М. Параметры равновесного спектра частиц в коагулирующей системе с распадом агрегатов // Коллоид. журн. 2001. Т. 63, № 1. С. 39–42.

ПРИЛОЖЕНИЕ

Рис. 1. Иллюстрация подхода к расчету зависимости вязкости от скорости сдвига. Ось X направлена вертикально вверх. Направление вращения фрактального агрегата (круг на схеме) относительно центра инерции показано изогнутой фигурной стрелкой внутри круга. Остальные пояснения в тексте

Рис. 2. Зависимость ${\rm Ln}(\eta/\eta_{\infty}-1)$ от ${\rm Ln}G$, снятая при комнатной температуре для 6%-ного раствора ксантогената целлюлозы в воде. По мере роста G величина растет и составляет $\alpha=0.025;\ 0.27;\ 0.36;\ 0.6.$ При $\eta\ (G\approx 0)=1.7$ Па·с, $\eta_{\infty}=0.015$ Па·с, B=100

Рис. 3. Зависимость ${\rm Ln}(\eta/\eta_{\infty}-1)$ от ${\rm Ln}G$, снятая при комнатной температуре для образца нефти. $\eta~(G\to 0)\approx 25~{\rm M\Pi a\cdot c},~\eta_{\infty}=0,5\cdot {\rm M\Pi a\cdot c},~G_{\rm min}\approx 3~{\rm cek}^{-1}$