ВЗАИМОДЕЙСТВИЕ ГЕОСФЕР КАК НЕОБХОДИМОЕ УСЛОВИЕ ОБРАЗОВАНИЯ НЕФТИ

С.Х. Лифшиц ИПНГ СО РАН, Якутск

Рассмотрена модель нефтегазообразования, согласно которой генезис нефти является следствием взаимодействия органического вещества осадочных пород верхней части земной коры и глубинных флюидов нижней части земной коры и (или) мантии, находящихся в сверхкритическом состоянии.

Многие аспекты, связанные с процессами генерации нефти и аккумуляции ее в залежь, остаются дискуссионными. Вероятно, это связано с тем, что процессы, ведущие к образованию нефти, рассматриваются как результат преобразования вещества в рамках одной из геосфер.

Так, согласно осадочно-миграционной концепции, образование нефтяных углеводородов происходит путем катагенетического преобразования биогенного органического вещества осадочных пород, достигших главной фазы нефтеобразования в результате погружения. Чрезвычайно низкая скорость этих процессов компенсируется их длительностью, соизмеримой с масштабом геологического времени. То есть образование нефти является результатом преобразований, протекающих в верхних слоях земной коры.

В соответствии с гипотезами о глубинном происхождении нефти, синтез нефтяных углеводородов осуществляется из неорганических или органических соединений в верхней мантии или нижних слоях земной коры. Образовавшаяся нефть поднимается и аккумулируется в залежь в породах-коллекторах. Кругооборот углерода в природе, если и рассматривается в этих гипотезах, то лишь как поэтапное преобразование органического вещества в каждых новых Р-Т условиях, достигаемых осадочными породами в процессе их погружения. Конечный результат этих изменений – образование низкомолекулярных соединений, которые и являются сырьем для последующего синтеза нефти. Однако не следует забывать, что нефть – сложная смесь по крайней мере трех групп органических соединений (углеводороды, смолы, асфальтены), в ее состав входит много углеводородов с относительно высокой свободной энергией. Образование столь многокомпонентной смеси органических соединений с составом, далеким от термодинамически равновесного, трудно объяснить в рамках существующих теорий. Миграция нефти в залежь также

требует реализации неких механизмов концентрирования рассеянных нефтяных углеводородов.

Эти и другие вопросы находят свое объяснение, если предположить, что образование нефти шло в системе взаимодействующих геосфер, открытой по потоку энергии вещества. Это позволяет предложить следующую модель нефтегазообразования, согласно которой нефть является результатом взаимодействия по крайней мере двух геосфер: органического вещества осадочных пород верхних слоев земной коры и глубинных флюидов нижней части земной коры и (или) мантии. Основными компонентами глубинных флюидов являются СН₄, СО₂, Н₂, Н₂О. Метан и диоксид углерода в условиях главной фазы нефтеобразования находятся сверхкритическом состоянии, вода и водород легко растворяются в сверхкритических средах. Таким образом, можно предположить, что в осадочные породы в условиях главной фазы нефтеобразования внедряются глубинные флюиды, находящиеся в сверхкритическом состоянии. Благодаря своей сверхтекучести они полностью или частично пронизывают осадочные породы, растворяя органические вещества и увлекая их в микропоры и микротрещины нефтематеринских пород. В некоторых случаях деформационные напряжения могут оказаться столь существенными, что это приведет к инициации механохимических реакций, сопровождающихся разрывом С-С-связей. В результате протекания механохимических реакций образуются более низкомолекулярные соединения. Образование этана и особенно пропана, которые в этих условиях также находятся в сверхкритическом состоянии, многократно увеличивает растворяющую способность сверхкритического флюида. Таким образом, флюид будет захватывать все большее количество органических соединений, включая смолы и асфальтены, т.е. произойдет самоускорение процессов растворения И преобразования высокомолекулярных органических соединений по принципу реализации положительных обратных связей. Кроме того, частицы породы могут одновременно служить катализаторами протекающих на их поверхности преобразований. Развитая за счет микротрещин и микропор поверхность пород имеет фрактальную размерность, что также будет способствовать реализации положительных регуляторных обратных связей. Таким образом, поток сверхкритического флюида способен растворять, трансформировать и концентрировать нефтеподобные органические вещества, выносить сквозь материнские породы по породам-проводникам в коллектора, где вследствие падения давления будет осуществляться разгрузка сверхкритического флюида с выделением фазы жидкой нефти и газовой фазы. Согласно предлагаемой модели, на тип образующейся нефти влияют как состав органического вещества, характерного для определенных фациально-генетических условий формирования осадочного бассейна, так и состав глубинного флюида. Достаточно мягкое механохимическое преобразование органического вещества позволяет сохраниться генетическим связям в составе и структуре органического вещества осадочных пород и образующейся нефти. В рамках рассматриваемой модели нефтеобразования сложный и неравновесный состав нефти находит свое объяснение.

Предлагаемая модель позволяет предположить, что в потоке сверхкритического флюида процесс генерации нефтяных углеводородов идет по принципу самоускорения (реализация положительных обратных связей) и осуществляется достаточно быстро – в режиме реального времени. Таким образом, процесс генезиса нефти можно представить в виде возникновения самоорганизующейся диссипативной системы в открытой неравновесной среде с образованием на стоке стационарной структуры – газонефтяной залежи.

Проведена экспериментальная проверка предлагаемой модели на примере обработки пород и современных осадков диоксидом углерода в состоянии сверхкритического флюида. Показано, что сверхкритический СО2 способен растворять, преобразовывать и переносить органическое вещество, содержащееся в этих объектах. Для сверхкритического СО₂ характерно преимущественное растворение и перенос углеводородной фракции органического вещества, включая реликтовые углеводороды. На фоне трансформации высокомолекулярных углеводородов наблюдалось увеличение содержания среднемолекулярных углеводородов, изоалканов, уменьшение коэффициента отношения нечетных н-алканов к четным. Указанные преобразования обычно связывают с процессами геохимического созревания органического вещества. Однако, как показал эксперимент, эти преобразования могут осуществляться и в процессах сверхкритической экстракции в режиме реального времени.