УДК 622.245.422

Оценка степени влияния времени твердения и воздействия глинокислотного реагента на упругопрочностные свойства цементного камня

И.Ю. Коробов^{1*}, С.Н. Попов^{2**}

- 1 Шлюмберже Восток, г. Южно-Сахалинск;
- 2 Институт проблем нефти и газа РАН, г. Москва

E-mail: *ilya.so200926@gmail.com, **popov@ipng.ru

Аннотация. В статье приводятся и анализируются результаты исследований упругопрочностных свойств цементного камня при затвердевании в различных временных границах и воздействии глинокислотного реагента. Отражены изменения прочности, модуля Юнга и коэффициента Пуассона образцов в зависимости от различного времени твердения и воздействия глинокислотной агрессивной среды.

Ключевые слова: цементный камень, пределы прочности, упруго-прочностные свойства, модуль Юнга, коэффициент Пуассона, глинокислотный реагент.

Для цитирования: *Коробов И.Ю., Попов С.Н.* Оценка степени влияния времени твердения и воздействия глинокислотного реагента на упруго-прочностные свойства цементного камня // Актуальные проблемы нефти и газа. 2019. Вып. 4(27). https://doi.org/10.29222/ipng.2078-5712.2019-27.art13

Как известно, цементирование скважин — это процесс размещения цементного раствора в заколонном пространстве между текущей и предыдущей колоннами либо открытым стволом и текущей колонной [1–3]. При оценке качества цементирования скважин одним из определяющих факторов являются упруго-прочностные свойства цемента, которые оказывают существенное влияние на дальнейшую разработку скважины и безопасность работ. Помимо марки и состава цементного камня, на его качество могут влиять термобарические условия в скважине, воздействие различных физико-химически активных жидкостей, водоцементное отношение [1–5].

Подобные эффекты могут происходить на любом из дальнейших этапов — будь то строительство скважины, интенсификация притока либо добыча флюидов. Ввиду этого, упруго-прочностные свойства цементного камня могут меняться с течением времени и при воздействии вышеупомянутых жидкостей. Наиболее опасными интервалами, где возможно снижение прочностных свойств цементного камня, являются соляные толщи. Магнезиальные соли являются наиболее опасными, а катион магния — основным агрессивным компонентом [5].

В рамках данной работы в лабораторных условиях были определены упругопрочностные свойства цементного камня цемента ЦТРС-У, применяемого для строительства скважин ачимовских отложений месторождений ХМАО при различных времени твердения и времени взаимодействия с глинокислотным реагентом. Чтобы избежать «эффекта обоймы», опыты проводились на образцах размером 20x20x40 мм, согласно ГОСТ [6, 7]. Подобный эффект может возникнуть, когда трещина скола, образовавшаяся при разрушении образца, выходит на плиту пресса [1, 2].

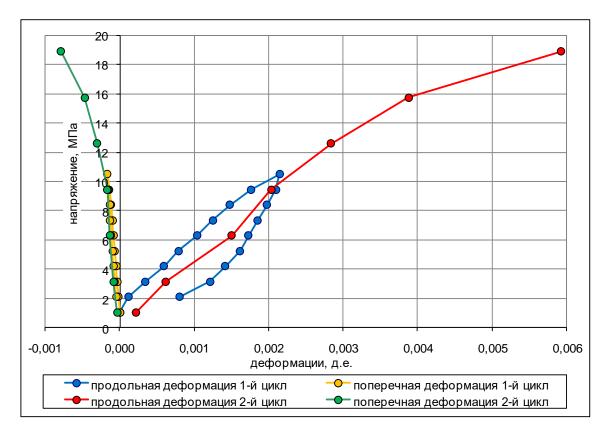

В работе [1] указано, что из-за «эффекта обоймы» прочность цементного камня может быть завышена на 20–30%. Для проведения опытов была составлена программа исследований согласно поставленной задаче. В результате испытаний определялись следующие упруго-прочностные характеристики цементных образцов: пределы прочности при растяжении σ_p и при сжатии $\sigma_{cж}$ (табл. 1); строились диаграммы «напряжения-деформации» (рис. 1) и рассчитывались модуль упругости (модуль Юнга) E; коэффициент Пуассона ν .

Таблица 1

Обобщенные результаты исследований упругих и прочностных свойств образцов цементного камня в процессе его твердения и под воздействием глинокислотного реагента

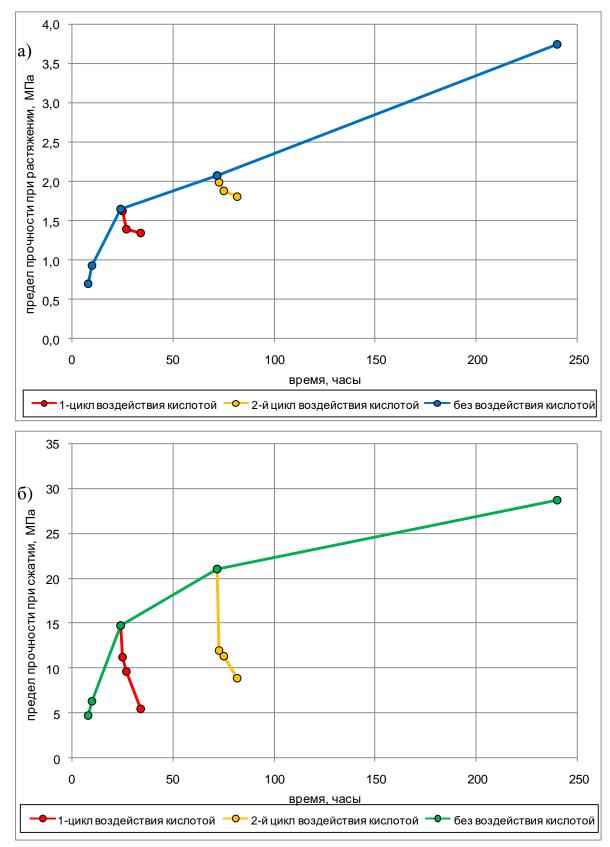
№ обр.	Время от начала твердения, ч	Время воздействия кислотой, ч	<i>σ</i> _p , МПа	<i>σ_{сж1},</i> МПа	<i>σ</i> _{сж2} , МПа	<i>о_{сж ср.},</i> МПа	<i>Е,</i> ГПа	<i>V,</i> д.е.
1	6		0.69	4.68	4.21	4.45	1.85	0.342
2	10		0.93	6.34	5.98	6.16	2.13	0.256
3	24		1.65	14.70	15.03	14.87	4.88	0.198
4	25	1	1.62	11.24	14.70	12.97	3.78	0.205
5	27	3	1.39	9.60	13.27	11.44	3.48	0.257
6	34	10	1.34	5.47	4.92	5.20	2.64	0.321
7	72		2.07	21.00	18.90	19.95	9.89	0.127
8	73	1	1.99	12.00	18.50	15.25	5.65	0.148
9	75	3	1.88	11.30	15.20	13.25	4.86	0.251
10	82	10	1.80	8.86	9.34	9.10	3.72	0.297
11	240		3.75	28.70	32.50	30.60	10.97	0.103

Примечание. Синим цветом отмечены интервалы времени, в которых механические свойства образцов цементного камня определялись после воздействия глинокислотного реагента.

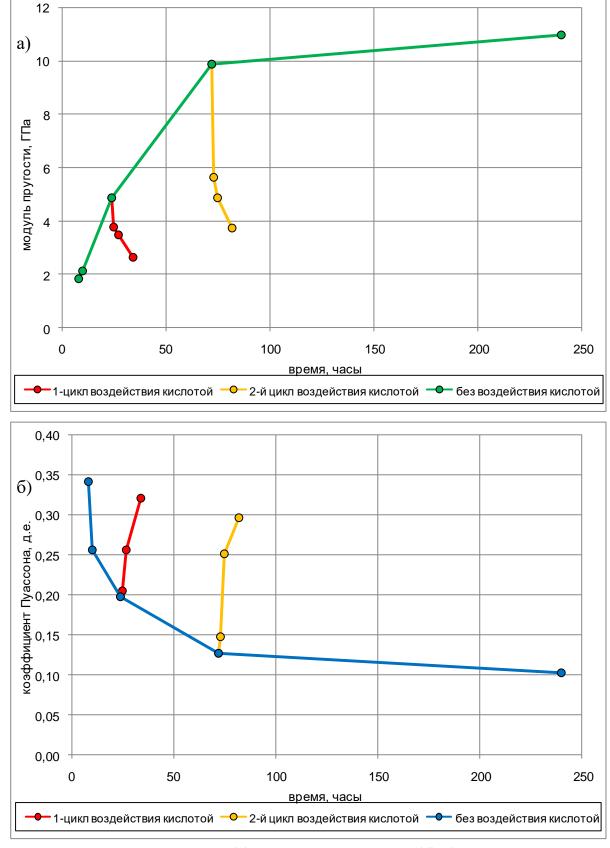
Рис. 1. Пример диаграммы «напряжения-деформации», полученной на основе лабораторных исследований

Учитывая опыт сервисных компаний, занятых в строительстве скважин, начало эксплуатации скважины после цементирования секции с использованием цемента ЦТРС-У происходит, в среднем, спустя 24 часа после окончания работы. В соответствии с свойства образцов без вышеприведенной программой, применения реагента исследовались после 6, 10, 24, 72 и 240 часов твердения. В качестве активного химического реагента использовалась смесь 12% соляной кислоты (HCl) и 3% плавиковой кислоты (НF). Определение изменения упруго-прочностных свойств образцов при воздействии глинокислотного реагента производилось спустя 1, 3, 10 часов после одних и трех суток твердения образцов. Пределы прочности и упругие свойства определялись согласно ГОСТов [6-8].

На основании полученных результатов было установлено, что для более качественного цементирования скважин может требоваться увеличенное время ожидания набора прочности цементного камня. Спустя 10 суток твердения значения прочности при растяжении и при сжатии, модуль упругости, коэффициент Пуассона соответственно равны 3.75 МПа и 30.6 МПа, 10.97 ГПа, 0.103. Спустя 10 суток твердения цементного


камня предел прочности при сжатии увеличился в 2.06 раза, предел прочности при растяжении – в 2.27 раза, модуль Юнга – в 2.25 раз, а коэффициент Пуассона уменьшился в 1.92 раза относительно образца, затвердевавшего в течение одних суток. Данные изменения также говорят о необходимости большего ожидания затвердевания цементного камня во избежание экономических и экологических проблем в дальнейшей разработке и добыче месторождений углеводородов [4].

В табл. 2 приведены результаты определения величин уменьшения прочностных свойств и модуля упругости а также увеличения коэффициента Пуассона для образцов, обработанных глинокислотным реагентом через 1, 3, 10 часов (образцы №№ 4–6, 8–10) воздействия, относительно образцов, затвердевавших в течение 24 и 72 часов (№№ 3, 7). Для образцов № 3 и № 7 приведены значения, определенные опытным путем, для партий образцов №№ 4–6 и №№ 8–10 — изменения относительно исходных образцов. Основные результаты экспериментов показаны на рис. 2 и 3.


Таблица 2 **Изменение упруго-прочностных свойств для образцов, обработанных глинокислотным реагентом**

№ обр.	Время от начала твердения, ч	Время воздействия кислотой, ч	$\sigma_{\!\scriptscriptstyle p}$, МПа	<i>о_{сж ср.,}</i> МПа	<i>Е,</i> ГПа	<i>V,</i> д.е.						
3	24	0	1.65	14.87	4.88	0.198						
7	72	0	2.07	19.95	9.89	0.127						
№ обр.	Время от начала твердения, ч	Время воздействия кислотой, ч	Уменьше- ние $\sigma_{\!\scriptscriptstyle p}$.	Уменьше- ние <i>о_{сж. ср.}.</i>	Уменьше- ние <i>Е</i>	Увеличе- ние $ u$						
Изменение свойств относительно образца №1												
4*	25	1	1.02	1.15	1.29	1.04						
5	27	3	1.19	1.3	1.4	1.3						
6	34	10	1.23	2.86	1.85	1.62						
Изменение свойств относительно образца №7												
8	73	1	1.04	1.31	1.75	1.17						
9	75	3	1.1	1.51	2.03	1.98						
10	82	10	1.15	2.19	2.65	2.34						

Примечание. Синим цветом отмечены интервалы времени, в которых механические свойства образцов цементного камня определялись после воздействия глинокислотного реагента.

Рис. 2. Изменение предела прочности при растяжении (а) и предела прочности при сжатии (б) образцов цементного камня в зависимости от времени твердения и воздействия глинокислотного реагента

Рис. 3. Изменение модуля упругости (а) и коэффициента Пуассона (б) образцов цементного камня в зависимости от времени твердения и воздействия глинокислотного реагента

Как следует из результатов, приведенных в табл. 2, наблюдаются значительные снижения прочностных характеристик, модуля Юнга. Увеличение значений коэффициента Пуассона говорит о постепенном разваливании образца и преобразовании его в рыхлое состояние. После воздействия на образец глинокислотным реагентом в течение 10 часов после его твердения в течение 3 суток уменьшение его прочностных свойств в сравнении с образцом, затвердевавшим всего одни сутки, происходит слабее. Это наблюдение говорит о некоторой устоявшейся прочности после продолжительного твердения.

Снижение прочностных свойств цементного камня под воздействием агрессивной среды наблюдается ввиду коррозии, связанной с наличием в цементном камне Ca(OH)₂. Одним из способов предотвращения снижения прочности цемента является снижение количества гидратной извести в его составе, а также наличие добавки глинопорошка в концентрации 10–15% [9, 10].

Таким образом, согласно приведенным результатам, при воздействии агрессивной среды на цементный камень его прочностные свойства значительно ухудшаются, что может привести к большим экологическим проблемам и финансовым потерям компаний-разработчиков.

Статья написана в рамках выполнения государственного задания (тема «Исследование термодинамических свойств углеводородных смесей, моделирование гидротермодинамических, физико-химических и геомеханических процессов в геосредах с целью повышения эффективности разработки трудноизвлекаемых запасов нефти и газа», № АААА-А19-119030690057-5).

Литература

- 1. *Толкачев Г.М., Асанов В.А, Фохм А.А*. Оценка упруго-прочностных свойств цементного камня тампонажного материала, предназначенного для цементирования скважин // Вестник ПНИПУ. Геология. Нефтегазовое и горное дело. 2013. № 8. С. 35–40.
- 2. *Карташов Ю.М.*, *Матвеев Б.В.*, *Михеев Г.В.*, *Фадеев А.Б.* Прочность и деформируемость горных пород. М.: Недра, 1979. 269 с.
- 3. *Коробов И.Ю., Попов С.Н.* Типы цементов, используемых при строительстве нефтяных и газовых скважин и вариации их физико-механических свойств при экспериментальных исследованиях // Нефтепромысловое дело. 2019. № 7. С. 48–56. https://doi.org/10.30713/0207-2351-2019-7(607)-48-56

- 4. Попов С.Н., Коробов И.Ю. Эксперименты, связанные с изменением упругих и прочностных свойств цементного камня для строительства скважин в процессе его твердения и под воздействием глинокислотного реагента // Бурение и нефть. 2019. № 9. С. 34–40.
- 5. *Агзамов Ф.А.*, *Махмутов А.Н.*, *Токунова Э.Ф*. Исследование коррозионной стойкости тампонажного камня в магнезиальных агрессивных средах // Георесурсы. 2019. Т. 21. № 3. С. 73–78. https://doi.org/10.18599/grs.2019.3.73-78
- 6. ГОСТ 21153.2-84. Породы горные. Методы определения предела прочности при одноосном сжатии. М.: Изд-во стандартов, 1984. 17 с.
- 7. ГОСТ 28985-91. Метод определения деформационных характеристик при одноосном сжатии. М.: Изд-во стандартов, 1991. 17 с.
- 8. ГОСТ 21153.3-85. Породы горные. Методы определения предела прочности при одноосном растяжении. М.: Изд-во стандартов, 1986. 18 с.
- 9. *Кузнецова И.Н.*, *Ращупкина М.А*. Процессы коррозии цементного камня в его структуре // Вестник СибАДИ. 2012. Вып. 2(24). С. 49–52.
- 10. *Булатов А.И*. Коррозия тампонажного камня в скважине // Бурение и нефть. 2016. № 5. С. 27–31.

Evaluation of the degree of the effect of hardening time and the influence of the clay acid reagent on the elastic-strength properties of cement stone

I.Yu. Korobov^{1*}, S.N. Popov^{2**}

- 1 Schlumberger Vostok, Yuzhno-Sakhalinsk;
- 2 Oil and Gas Research Institute, Russian Academy of Sciences, Moscow

E-mail: *ilya.so200926@gmail.com, **popov@ipng.ru

Abstract. The paper reviews the results of laboratory experiments for determining elastic and strength properties of cement samples for various hardening and acid-cut clay mud exposure periods. Significant changes in the ultimate strength, Young's modulus and Poisson's ratio of the samples depending on the hardening and acid-cut clay mud exposure time are demonstrated.

Keywords: cement stone, tensile strengths, elastic strength properties, Young's modulus, Poisson's ratio, clay acid reagent.

Citation: Korobv I.Yu., Popov S.N. Evaluation of the degree of the effect of hardening time and the influence of the clay acid reagent on the elastic-strength properties of cement stone // Actual Problems of Oil and Gas. 2019. Iss. 4(27). https://doi.org/10.29222/ipng.2078-5712.2019-27.art13 (In Russ.).

References

- 1. *Tolkachev G.M.*, *Asanov V.A.*, *Fokht A.A.* Estimating the elastic and strength properties of cement stone plugging material prescribed for cementing wells // Vestnik PNRPU. Geology. Oil, Gas and Mining Engineering. 2013. No. 8. P. 35–40. (In Russ.).
- 2. *Kartashov Y.M., Matveev B.V., Mikheev G.V., Fadeev A.B.* Strength and deformability of rocks. Moscow: Nedra, 1979. 269 p. (In Russ.).
- 3. *Korobov I.Y., Popov S.N.* Cement types which are used during well construction and variation of physical and mechanical cement properties under experiments // Oilfield Engineering. 2019. No. 7. P. 48–56. (In Russ.). https://doi.org/10.30713/0207-2351-2019-7(607)-48-56
- 4. *Popov S.N.*, *Korobov I.Y.* Experiments related to changing of elastic and strength properties of cement stone for well construction during its hardening in acid-cut clay mud // Drilling and Oil. 2019. No. 9. P. 34–40. (In Russ.).
- 5. Agzamov F.A., Makhmutov A.N., Tolkunova E.F. Study of corrosion stability of a cement stone in magnesia aggressive environment // Georesursy. 2019. Vol. 21. No. 3. P. 73–78. https://doi.org/10.18599/grs.2019.3.73-78

- 6. GOST 21153.2-84. The rocks. Uniaxial compression tensile methods. Moscow: Standards Publishing House, 1984. 17 p. (In Russ.).
- 7. GOST 28985-91. Method for determination of deformation characteristics under uniaxial compression. Moscow: Standards Publishing House, 1991. 17 p. (In Russ.).
- 8. GOST 21153.3-85. The rocks. Methods for determining uniaxial tensile strength. Moscow: Standards Publishing House, 1986. 18 p. (In Russ.).
- 9. *Kuznetsova I.N.*, *Raschupkina M.A.* Processes of corrosion of cement stone in its structure // Vestnik SibDI. 2012. Iss. 2(24). P. 49–52. (In Russ.).
- 10. *Bulatov A.I.* Corrosion of the cement stone in the well // Drilling and Oil. 2016. No. 5. P. 27–31. (In Russ.).