НАЗЕМНЫЙ КОНТРОЛЬ ПРОЦЕССА ЗАХОРОНЕНИЯ ПРОМСТОКОВ

Шулейкин В.Н. ИПНГ РАН, e-mail: shvn1947@yandex.ru

Введение

Технология заводнения нефтяных пластов возникла и стала быстро развиваться в 30-е годы прошлого века для поддержания пластового давления – увеличения нефтеотдачи. По мере роста добычи нефти возросли объемы попутно добываемых пластовых, подтоварных вод, которые из-за ущерба, причиняемого окружающей среде, стало невозможно сбрасывать в открытые водоемы. В 50–60-е годы ряд отраслей промышленности стали перенимать опыт нефтяников в части подземного захоронения промстоков из соображений защиты окружающей среды [1, 2].

В ряде промысловых ситуаций возникает избыток вод для поддержания пластового давления, которые приходится захоранивать в поглощающие горизонты. К этим горизонтам предъявляются жесткие геолого-гидрологические и технико-экономические требования: они не должны содержать питьевых вод; должны быть насыщены соляными и рассольными водами; их емкостные и фильтрационные свойства должны обеспечивать прием запланированных промстоков; поглощающие горизонты должны быть надежно изолированы от вышележащих пресных горизонтов [3, 4].

Существенной особенностью захоронения промстоков в газовой промышленности является сравнительно небольшой их объем. Образующиеся на предприятиях отрасли промстоки можно классифицировать по количеству следующим образом:

- малое - до 50 м³/сут (до 15-20 м³/год);

- среднее – 50–300 м³/сут (от 15–20 до 100 тыс. м³/год);

- значительное - 300-1000 м³/сут (100-365 тыс. м³/год);

- большое - 1000-4000 м³/сут (365-1500 тыс. м³/год);

– очень большое – 4000–10000 м³/сут (от 1,5 до 3,5–4,0 млн. м³/год).

Поглощающие горизонты должны залегать на приемлемых в техникоэкономическом отношении глубинах, которые согласно отечественной и мировой практике подземного захоронения промстоков составляют в большинстве случаев от 600–700 до 2500–3000 м.

Подземное захоронение осуществляется в сейсмически неактивных областях. Расстояние от места захоронения до местоположения ценных водных источников

рассчитывается заранее с учетом радиуса растекания отходов и срока эксплуатации подземного резервуара. Водоносные пресные горизонты располагаются выше.

В последние десятилетия был выполнен большой объем работ по атмосферноэлектрическому мониторингу зон закачки–отбора флюида в пласт-коллектор [5]. Построено модельное представление связей водорода, метана, радона и элементов приземного атмосферного электричества. Субвертикальный поток водорода и метана захватывает радон с глубины 4–6 м и выносит его в приповерхностные слои грунта и атмосферу. Образуемые в ходе ионизации в атмосфере легкие ионы определяют полярные проводимости воздуха; их соединение с нейтральными ядрами конденсации задает атмосферное электрическое поле (АЭП) [6, 7].

Содержание радона грунта не менее чем в 100 раз превышает содержание радона атмосферы [8, 9]. Это значит, что изменение выноса ионизатора в атмосферу в 2 раза не скажется на содержании радона грунта. Однако в приповерхностной атмосфере подобные изменения приведут к двукратному изменению концентрации эксхаляции радона и к двукратному изменению АЭП. Другими словами, АЭП будет крайне чувствительно к изменения плотности субвертикальных потоков водорода и метана [10].

Рассмотрим серию экспериментов по атмосферно-электрическому контролю подземной закачки флюида для анализа возможностей использования методик при решении задачи мониторинга процессов захоронения промстоков.

Влияние гидрогеологических процессов на элементы приземного атмосферного электричества (атмосферное электрическое поле)

Первые результаты, иллюстрирующие влияние гидрогеологических процессов на изменения АЭП, были получены в ходе профильных наблюдений над депрессионной воронкой городской водозаборной станции г. Светлогорска (Белоруссия) [7, 11]. Измерения проводились с использованием двух измерительных инструментов – стационарного и мобильного флюксметров «Поле-2». Стационарный флюксметр непрерывно работал в контрольной точке на полигоне «Узнож». Мобильный прибор устанавливался на крыше автомобиля УАЗ-452 (высота измерительных пластин порядка 2,3 м) и использовался для контроля АЭП на трассе Узнож–Светлогорск. При фоновом сигнале в контрольной точке ~90 В/м на профиле длиной 17,2 км был зарегистрирован уверенный рост сигнала. Пиковые амплитуды поля были зарегистрированы в непосредственной близости от водозаборной станции утром, днем и вечером, когда они доходили до величин ~400 В/м, ~900 В/м и ~600 В/м. Причина зарегистрированного роста

поля – депрессионная воронка, образованная в водоносном пласте в ходе водозабора и вытянутая в направлении Светлогорск–Узнож. Разряжение, созданное водозабором, минимизирует воздухообмен почва–атмосфера, что, в конечном итоге, приводит к спаду эксхаляции почвенного радона – основного ионизатора приземного воздуха [12–14], к регистрируемым высоким значениям поля – ярко выраженный классический электродный эффект [7, 15].

На станции захоронения радиоактивных отходов был поставлен обратный эксперимент. Проводились непрерывные наблюдения вариаций АЭП у нагнетательной скважины, в которую закачивался контрольный флюид [7]. Геологический разрез участка наблюдений – плотные суглинки четвертичных отложений московской и днепровской морен, залегающие до глубин ~70 м. Закачка контрольного флюида – воды осуществлялась через нагнетательную скважину, забуренную на глубину 50 м; скорость закачки ~1 м³/мин.

На рис. 1 представлены результаты изменения давления на устье нагнетательной скважины в ходе 1-го и 2-го циклов закачки флюида в грунт.

Рис. 1. Вариации давления на устье нагнетательной скважины в ходе циклов закачки 1 и 2

Кривые изменения давления на устье нагнетательной скважины в ходе двух закачек близки друг другу. По скачку давления видно, что в первом случае через 2,5 мин после начала закачки образуется гидроразрыв при давлении порядка 10,5 атм на устье скважины. Далее идет спад давления на величину ~2,5 атм и устойчивое состояние до конца закачки на уровне ~7,0 атм. При повторной закачке максимум давления меньше

(~7,5 атм) и наступает несколько раньше – приблизительно через 1,5 мин. после начала цикла.

На рис. 2 представлены вариации АЭП, зарегистрированные установленным на земле флюксметром «Поле-2» (высота измерительных пластин ~0,4 м). До начала закачки 1 фоновый уровень сигнала лежит на уровне ~(40–50) В/м (первые 9 минут записи на рис. 2). Через 2,5–3,0 мин после начала цикла наблюдается спад сигнала до 10–15 В/м. Именно в это время происходит гидроразрыв (см. рис. 1). Наиболее вероятной причиной зарегистрированного спада поля следует считать образование приповерхностного пылевого облака, несущего на себе отрицательный заряд – результат ударного воздействия гидроразрыва.

Рис. 2. Вариации атмосферного электрического поля в ходе 1-го и 2-го циклов закачки 30 м³ флюида в грунт на глубину 50 м

Бросается в глаза резкий спад сигнала со сменой знака поля до величин порядка (-140)–(-150) В/м приблизительно на 30-й минуте записи; через 20 мин после начала закачки. Импульсное сжатие покрывающих пород, вызванное образованием гидроразрыва, вызвало мощный локальный выброс ионизатора; в зоне выброса началось образование легких ионов, которые, соединяясь с нейтральными ядрами конденсации, резко увеличили плотность ионов тяжелых, несущих основную ответственность за АЭП. Максимальная плотность тяжелых ионов, естественно, наступила на середине их времени жизни – 40–50 мин; мощное ионообразование у поверхности Земли привело к появлению слоя отрицательного объемного заряда (реверсивный электродный эффект [15]) и к

отрицательным значениям поля. Близкий результат описан в работе [16], где причиной мощного выброса ионизатора был не гидроразрыв, а резкое увеличение уровня сейсмоакустических шумов.

Эксперимент проводился в июне 1988 г. в конце рабочего дня на территории станции захоронения радиоактивных отходов. К сожалению, согласно условиям работы на территории предприятия, измерительный инструмент нельзя было оставить на непрерывную регистрацию в течение ночи. Запись АЭП утром следующего дня (см. рис. 2., закачка 2) показывает, что за 15 часов после первой закачки фоновый уровень упал до величины ~10 В/м (первые 13 минут записи на рис. 2). Это значит, что за время между первой и второй закачками вода из зоны гидроразрыва частично ушла в поровое пространство покрывающих пород, вытеснив оттуда почвенный воздух, насыщенный радионуклидами. Следствие – повышенная ионизация приповерхностного воздуха и зарегистрированные малые АЭП.

Повторная закачка 30 м^3 воды в зону гидроразрыва (см. рис. 2) практически вызвала аналогичные вариации поля у устья нагнетательной скважины, но на меньших амплитудных перепадах. Минимум поля наступает несколько позднее, на 30-й минуте после начала закачки, так как имеет место не импульсное, а плавное вытеснение ионизатора из приповерхностного порового пространства. В остальном вариации АЭП близки друг другу: в ходе первой закачки отношение минимальных отрицательных полей к фону до начала цикла составляло величину ~(-4), во втором ~(-4)–(-5).

Наиболее близкий тематике статьи эксперимент был проведен при закачке отработанных природных рассолов [17]. Рассолы отбирались с глубины ~800 м, использовались для промывки теплообменных трубок ТЭЦ, после чего закачивались на глубину ~1100 м. На рис. 3 представлены результаты 2-х последовательных АЭП-профилирований зоны растекания отработанных рассолов.

К сожалению, территория, на которой следовало проводить наблюдения, была застроена 2–3-х этажными зданиями. Во избежание экранировки поля постройками наблюдательный профиль был выбран П-образной формы (правый угол рис. 3). Профиль проходился 2 раза (Е1 и Е2) с интервалом порядка двух часов. Из сравнения графиков видно, что выбор наблюдательного профиля был очень удачным: область растекания закачиваемых отработанных рассолов пересекалась 2 раза: в области пикетов 3–13 и 13–21.

Рис. 3. Вариации АЭП на профиле, дважды пересекающем зону закачки отработанных рассолов, в правом углу графика показано положение нагнетательной скважины и П-образная форма профиля

Самый большой экспериментальный материал по изменениям АЭП при закачке флюида в пласт-коллектор был получен в работах на ПХГ. Для понимания физических причин связей процесса закачки с изменениями электрических характеристик приземной атмосферы рассмотрим полученные результаты более подробно.

Геодезические наблюдения на территории газохранилищ показали, что в период закачки уверенно регистрируются современные вертикальные движения земной коры. В частности, нивелировки, проведенные на Краснопартизанском ПХГ (Украина), зафиксировали вертикальное поднятие грунта до 2 см [18]. При поднятии будет происходить сжатие порового пространства приповерхностных слоев грунта, увеличение содержания летучих газов-носителей радона, приводящее к росту эксхаляции почвенного радона. Рассмотрим на примерах полевых наблюдений, как это сказывается на вариациях АЭП над зоной объема закачки.

В ходе наблюдений на Касимовском ПХГ в 2000 г. (сентябрь) и 2003 г. (начало июля) на одном из профилей Касимовского ПХГ, отрезок которого лежит на линии от куста нагнетательных скважин к купольной части покрышки, наблюдалось явное рассогласование вариаций поля (рис. 4). Для удобства сравнения вариации АЭП представлены в относительных единицах (нормированные на максимальное значение контролируемого параметра). Обращает на себя внимание всплеск поля на отрезке 1200–

3200 м в 2000 г., который сменяется провалом в 2003 г. – ярко выраженный реверсивный электродный эффект.

Рис. 4. Результаты профильных наблюдений АЭП на профиле, отрезок которого от1200 до 3200 м лежит на линии от куста нагнетательных скважин к купольной части покрышки

Коэффициент корреляции по всему массиву данных наблюдений на профиле 2000 и 2003 гг. не значим (k = 0,14). Однако, если разбить результаты измерений на две части по пикетам (1–3, 22–31) и (4–21), то коэффициенты корреляции заметно возрастают: k(1–3, 22–31) = 0,82 и k(4–21) = 0,51. Причина наблюдаемых отличий кроется во временной задержке измерений относительно цикла закачки горючего ископаемого. В 2003 г. измерения проводились в июне-месяце, когда газ активно уходил к купольной части покрышки; в 2000 г. – в сентябре, когда газ уже ушел к куполу.

В сентябре 2009 г. на территории 4-й очереди Касимовского ПХГ эксперимент повторялся на площади куста 19 нагнетательных скважин. На 7-й день после завершения недельного цикла закачки на 152 пикетах (8 пикетов вокруг каждой скважины) была проведена оперативная мобильная съемка АЭП. Средние значения поля по выделенным 5 группам скважин представлены на рис. 5. Полученный результат позволяет утверждать, что горючий газ за 7 дней после завершения цикла закачки практически весь ушел к купольной части покрышки, находящейся в юго-западном направлении от куста нагнетательных скважин. На момент наблюдений остатки газа находились только в зоне 421 и 431 скважин.

Рис. 5. Средние значения АЭП по выделенным 5 группам скважин на 7-ой день после завершения цикла закачки

Проведем аналогичную проверку эффекта сжатия, но уже на материалах газовых наблюдений, в частности, водорода почвенного воздуха. На той же территории, начиная со второго дня после завершения недельного цикла закачки, проводился контроль содержания водорода грунта – 8 наблюдательных пикетов вокруг каждой из 19 нагнетательных скважин. Как отмечалось выше, исследуемые скважины были разделены на 5 групп (см. рис. 5), вытянутых в направлении с севера на юго-запад. Предполагалось, что содержание водорода в приповерхностных слоях грунта будет пропорционально содержанию закачанного горючего газа в окрестности коллекторной области скважины. На рис. 6 даны круговые диаграммы водорода почвенного воздуха, каждое значение которых усреднялось по выбранным линиям скважин.

Первая усредненная круговая диаграмма содержания водорода грунта дана для скважин 1-й линии (см. верхний график рис. 6). В рамках сформулированных выше модельных представлений из нее следует, что закачанный газ распространяется в секторе SW (ЮЗ), W (З), NW (СЗ), N (С).

Следующая усредненная круговая диаграмма водорода дана для скважин 2-й линии Согласно диаграмме основное направление ухода-прихода газа – S (Ю), SW, W, NW, N, NO (CB). Сравнение круговых диаграмм водорода на 1-й и 2-й линиях скважин указывает на доминирующее направление ухода газа в секторе SW–NW– NO.

Рис. 6. Усредненные круговые диаграммы содержания водорода грунта на 1–3 (верхний график) и 4, 5 (нижний график) линиях скважин

Последняя круговая диаграмма на верхнем графике рис. 6 дана для 3-й линии скважин. Выделенная группа скважин ближе всего тяготеет к центру исследуемой площади. Диаграмма концентраций водорода близка к круговой, симметрична относительно направления N–S (C–Ю). Это означает разнонаправленные направления прихода и ухода горючего газа.

Следующая выделенная группа скважин – 4 линия (см. нижний график рис. 6). Сектор диаграммы в направлениях NO, O, SO указывают на распространение прихода газа со стороны скважин 1–3-й линий. Уход газа, в основном, идет в направлениях S, SW, W и NW. Наконец, усредненная диаграмма по группе скважин 5-й линии имеет ярко выраженный двухлепестковый характер. Приход газа идет в секторе NO, O; уход – в направлении SW.

Наблюдения водорода на выделенных линиях скважин были начаты на 2-ой день после завершения недельного цикла закачки, длились 4,5 дня и шли в последовательности от 1-й к 5-й линиям скважин. Полученный результат уверенно подтверждает высказанное предположение о сжатии приповерхностного порового пространства при движении газа по пласту-коллектору, указывая тем самым на возможность наземного газового и атмосферно-электрического контроля контура растекания закачанного флюида.

Обсуждение результатов

В практику атмосферно-электрических наблюдений был введен термин «хорошая погода»: ветер не более 6 м/с, отсутствие грозовых явлений, всякого рода осадков, инея, тумана, пыли, нижней облачности [19–21]. На рис. 7 приведены две последовательные записи вариаций АЭП на профиле длиной 17,5 км, полученные в условиях хорошей погоды.

Рис. 7. Вариации АЭП на профиле в условиях хорошей погоды

Решение задачи атмосферно-электрического мониторинга геологических неоднородностей и зон геодинамических процессов в комплексе с измерениями водорода и радона ужесточило требования к скорости ветра до 3 м/с. Более того, шумовые возмущения АЭП могут вызвать изменения атмосферного давления и относительной влажности воздуха [22, 23]. Оба параметра приземной атмосферы поддаются

непрерывным оперативным измерениям, а вызванные ими шумовые вариации поля можно учесть в процессе обработки.

Из приведенных примеров атмосферно-электрического контроля процессов растекания флюида по пласту-коллектору ближе всего к решению поставленной задачи относится закачка отработанных рассолов (см. рис. 3). На момент наблюдений в пласт-коллектор были закачаны первые сотни кубометров флюида. По представленной во Введении классификации подобная закачка относится к средней категории. Профильные измерения АЭП проводились в период закачки – зарегистрированные провалы поля были вызваны избыточной эксхаляцией радона, порожденной сжатием порового пространства приповерхностных слоев грунта.

К счастью, выбранный П-образный профиль (см. рис. 3) дважды пересекал проекцию зоны растекания отработанных рассолов по пласту-коллектору на поверхность Земли. Не рассчитывая на очередную случайность, профильные наблюдения АЭП вокруг нагнетательной скважины следует начинать на кольцевых профилях. Отрезки кольцевых профилей с максимальными провалами поля позволят очертить сектор направления ухода промстоков относительно нагнетательной скважины; последующие наблюдения дополнительно пойдут по радиальным профилям.

Оптимально систему наблюдений вокруг нагнетательной скважины следует начинать до момента пуска ее в эксплуатацию. В первую очередь необходимо проведение наблюдений АЭП на кольцевых профилях. Полученные здесь вариации поля следует считать за нулевой уровень, от которого будут рассматриваться отклонения поля, зарегистрированные после начала закачки. В зависимости от текущих соотношений легких и тяжелых ионов (текущей метеоситуации) абсолютные значения поля могут заметно разниться друг с другом. Для удобства сравнения наблюдаемых вариаций поля от их абсолютных значений следует перейти к относительным, путем нормирования зарегистрированных значений АЭП на максимальное значение параметра на профиле. Пример подобной нормировки можно видеть на рис. 4.

Проведение профильных наблюдений АЭП выставляет жесткие требования к погодным условиям [19–23], что, естественно, исключает возможность режимного опроса исследуемой территории. Результаты наблюдений водорода почвенного воздуха, представленные на рис. 6, иллюстрируют возможность контроля растекания флюида по пласту-коллектору. В рассмотренном примере газовые наблюдения проводились в

идеальных погодных условиях. При контроле процесса растекания промстоков с использованием результатов измерений водорода почвенного воздуха методику пробоотбора можно сделать всепогодной. С этой целью, после установления по данным наблюдений АЭП проекции сектора растекания флюида, его следует разделить системой профилей, частично выходящих за его пределы. На этих профилях на глубине ~1 м следует установить заборные колокола с выводом от них шлангов на поверхность Земли. При подобной организации пробоотбора контроль содержания водорода грунта возможен в любых погодных условиях. Более того, использование пробозаборного колокола, объем которого будет заметно больше рабочего объема измерительного инструмента (~8 см³ для датчиков газоанализатора ВГ-2Б [24]), повысит точность и чувствительность измерений – проба почвенного воздуха будет накапливаться за временной интервал между измерениями.

Заключение

Приведенные материалы полевых наблюдений и их анализ показывают, что профильные наблюдения атмосферного электрического поля можно успешно использовать для контроля с поверхности Земли процесса растекания промстоков по пласту-коллектору. По принятой В отрасли классификации, без проведения дополнительных экспериментов контролю поддаются средние объемы ежесуточной закачки – 50–300 м³/сут (от 15–20 до 100 тыс. м³/год) на глубины ~1000 м относительно поверхности Земли.

Работы по атмосферно-электрическому мониторингу подземного захоронения промстоков следует проводить в условиях хорошей погоды. Оптимально начинать наблюдения АЭП на кольцевых профилях до пуска в эксплуатацию нагнетательной скважины, что позволит табулировать фоновый уровень регистрируемого сигнала. Последующие наблюдения на тех же профилях позволят ввести в рассмотрение разностную характеристику поля: {текущие значения поля на профиле} минус {фоновый уровень поля на профиле}. Для удобства сравнения вариаций АЭП их следует привести к относительным значениям путем нормировки на максимальное зарегистрированное значение параметра.

Для организации режимного опроса исследуемой территории после выявления сектора растекания промстоков по пласту-коллектору атмосферно-электрические измерения следует дополнить измерениями водорода почвенного воздуха. С этой целью

на профилях, частично выходящих за пределы сектора растекания, организовать систему заборных колоколов на глубине ~1 м. Периодический отбор образцов почвенного воздуха, накопленного в заборных колоколах, позволит проведение всепогодного контроля процессов растекания промстоков по пласту-коллектору.

Статья написана в рамках выполнения государственного задания (тема «Энергетика, динамика и дегазация Земли, теоретические и экспериментальные основы инновационных сейсмоакустических технологий исследования геологической среды и контроля за объектами нефтегазодобычи», № АААА-А16-116021510125-7).

ЛИТЕРАТУРА

1. Кирьяшкин В.М., Соколов А.Ф., Ильченко П.В. Особенности гидрогеологического обоснования полигона для закачки промышленных стоков на Касимовском подземном хранилище газа // Проблемы оценки риска загрязненных поверхностных и подземных вод в структуре ТЭК: Сб. науч. тр. М.: ВНИИГАЗ, 2001. С. 115–128.

2. Соколов А.Ф. Закачка промстоков в водоносный пласт: обоснование методики экспериментальных исследований // Экология и промышленная безопасность: Сб. науч. тр. М.: ВНИИГАЗ, 2003. С. 203–220.

3. Соколов А.Ф. Методы экспериментальных исследований при контроле ареала захоронения промстоков на подземных хранилищах газа // Защита окружающей среды в нефтегазовом комплексе. 2003. № 6. С. 25–33.

4. Король В.В., Позднышев Г.Н., Манырин В.Н. Утилизация отходов бурения скважин // Экология и промышленность России. 2005. № 1. С. 40–42.

5. Зубарев А.П., Шулейкин В.Н. Комплексный геофизический и геохимический контрольпри эксплуатации подземных газохранилищ. М.: Изд-во ООО «Газпром ПХГ», 2009. 264 с.

6. Шулейкин В.Н. Радон почвенного и атмосферного воздуха и дегазация Земли [Электронный ресурс] // Георесурсы, геоэнергетика, геополитика: Электрон. науч. журн. 2010. Вып. 1(1). 13 с. – Режим доступа: http://www.oilgasjournal.ru (Дата обращения 21.05.2018).

7. Шулейкин В.Н., Щукин Г.Г., Куповых Г.В. Развитие методов и средств прикладной геофизики – атмосферно-электрический мониторинг геологических неоднородностей и зон геодинамических процессов. СПб.: ЦОП РГГМУ. 2015. 206 с.

8. *Сисигина Т.И*. Измерения эксхаляции радона с поверхности горных пород // Вопросы ядерной метеорологии: Сб. ст. М.: Госатомиздат. 1962. С. 104–111.

9. Сисигина Т.И. Эксхаляция радона с поверхности нескольких типов почв Европейской части СССР и Казахстана // Радиоактивные изотопы в атмосфере и их использование в метеорологии: Сб. ст. М.: Атомиздат. 1965. С. 40–48.

10. Шулейкин В.Н. Чувствительность атмосферного электрического поля к изменениям концентраций водорода и метана [Электронный ресурс] // Георесурсы, геоэнергетика, геополитика: Электрон. науч. журн. 2016. Вып. 1(13). 19 с. – Режим доступа: http://www.oilgasjournal.ru (Дата обращения 21.05.2018).

11. Шулейкин В.Н., Щукин Г.Г. Взаимосвязь атмосферного электрического поля, давления и гидрогеологических процессов // Метеорология и гидрология. 2017. № 1. С. 29–40.

12. Тверской П.Н. Курс метеорологии. Л.: Гидрометиздат, 1951. 887 с.

13. Френкель Я.И. Теория явлений атмосферного электричества. Л.: ГИТТА, 1949.
155 с.

14. Чалмерс Дж. Атмосферное электричество. Л.: Гидрометиздат, 1974. 247 с.

15. *Редин А.А.* Математическое моделирование электродинамических процессов в приземном слое в условиях аэрозольного загрязнения атмосферы: Автореф. дис. ... канд. физ.-мат. наук. Таганрог. 2011. 19 с.

16. Купцов А.В., Марапулец Ю.В., Мищенко М.А., Руленко О.П., Шевцов Б.М., Щербина А.О. О связи высокочастотной акустической эмиссии с электрическим полем в приземном слое атмосферы // Вулканология и сейсмология. 2007. № 5. С. 71–76.

17. Шулейкин В.Н. Атмосферно-электрический мониторинг нефтяных и газовых залежей [Электронный ресурс] // Актуальные проблемы нефти и газа: Науч. сет. изд. 2017. Вып. 3(18). 11 с. – Режим доступа: http://www.oilgasjournal.ru (Дата обращения 21.05.2018).

18. Никонов А.И., Новаковский Б.А., Переверзев М.В. Геоинформационное экологогеохимическое картографирование подземного хранилища газа // Геоинформатика. 2002. № 1. С. 3–8.

19. Руководство по наземным наблюдениям за элементами атмосферного электричества. Л.: Издательство ГГО им. А.И. Воейкова. 1960. 95 с.

20. *Имянитов И.М., Шифрин К.С.* Современное состояние исследований атмосферного электричества // Успехи физических наук. 1962. Вып. 4. С. 593–642.

21. Семенов К.А. Хорошая погода и элементы атмосферного электричества // Труды ГГО им. А.И. Воейкова. 1982. Вып. 455. С. 112–119.

22. Шулейкин В.Н. Количественное исследование связей водорода, метана, радона и атмосферного электрического поля // Геофизические процессы и биосфера. 2018. Т. 17, № 1. С. 30–44.

23. Шулейкин В.Н. Динамика водоносных горизонтов и атмосферное электричество // Геофизические процессы и биосфера 2017. Т.16, № 3. С. 29–42.

24. *Николаев И.Н., Литвинов А.В., Халфин Т.М.* Автоматизированные газоанализаторы водорода в диапазоне объемных концентраций 10⁻⁶–1,0% // Измерительная техника. 2004. № 7. С. 54.