ОПРЕДЕЛЕНИЕ ФИЛЬТРАЦИОННО-ЕМКОСТНЫХ ХАРАКТЕРИСТИК ПОРИСТОЙ СРЕДЫ В ПРОЦЕССЕ СТРУКТУРИРОВАНИЯ ПОЛИМЕРОМ ДЕЗИНТЕГРИРОВАННОГО КВАРЦЕВОГО ПЕСКА ПО ТЕХНОЛОГИИ «ИПНГ-ПЛАСТ 2»

А.А. Пачежерцев¹, А.А Ерофеев¹, Д.А. Митрушкин¹, Д.А. Каушанский², А.И. Цицорин², А.Н. Дмитриевский² 1 – Московский физико-технический институт 2 – Институт проблем нефти и газа РАН E-mail: dak@ipng.ru

Введение

Вынос твердых частиц в результате разрушения слабосцементированного коллектора при эксплуатации нефтяных скважин остается серьезным осложнением для многих разрабатываемых месторождений. Высокую эффективность ограничения выноса твердых частиц показывают мероприятия по креплению слабосцементированных коллекторов химическими соединениями. Зарубежный и отечественный опыт обработки призабойной зоны пласта различными составами подтверждает целесообразность использования химических методов для ограничения выноса механических примесей.

Химические методы защиты внутрискважинного оборудования заключаются в обработке призабойной зоны слабосцементированного пласта минерально-вяжущими составами с использованием различных химических соединений [1]. Широкое промышленное применение в нефтяной отрасли получили технологии, основанные на соединений, применении кремнийорганических фенолрезорцинформальдегидных, карбамидных и др. типов смол [2-3]. Применяемые в нефтяной отрасли композиции не всегда показывают положительный результат, часто мероприятия по обработке призабойной зоны пласта химическими составами приводят к изменению параметров работы скважины: снижению дебита, повышению скин-эффекта. Совокупность физикохимических свойств состава определяет характер технологического воздействия на обрабатываемый пласт. Высокая вязкость химического состава не всегда обеспечивает фильтрацию раствора в пористые среды различной проницаемости. Использование дополнительных реагентов газообразования и отверждения в процессе структурирования композиции в пластовых условиях может приводить к нарушению сообщаемости пор и снижению проницаемости пласта. В процессе эксплуатации скважины под воздействием гидродинамических нагрузок возникает деформация полимерно-песчаной структуры вследствие недостаточной прочности материала, наблюдается восстановление концентрации механических частиц в добываемой жидкости до начального уровня через 4–9 месяцев работы скважины [4].

Технология скрепления дезинтегрированной пластовой породы «ИПНГ-ПЛАСТ 2» основана на создании в пласте связанной полимерной структуры уретанового полимера. Такая структура сочетает в себе два важных качества: сохранение исходной проницаемости несвязанной породы и одновременное придание прочности этой породе, что было показано нами ранее в работах [5–7]. В настоящем исследовании представлены новые данные по структуре скрепленных кернов, полученные с использованием метода компьютерной рентгеновской микротомографии (мКТ). Данный метод позволяет провести послойное неразрушающее сканирование и определение строения внутренней структуры образцов, включая минеральный состав, поры и трещины. Принцип метода заключается в том, что при прохождении рентгеновских лучей через объект, они поглощаются веществом в зависимости от толщины объекта и его химического состава согласно закону Бира-Ламберта:

$$I = I_0 \exp(-Ax) ,$$

где І – интенсивность лучей, регистрируемая приемником после прохождения объекта;

*I*₀ – начальная интенсивность лучей;

А – коэффициент абсорбции;

х – толщина объекта, через который проходят лучи.

В соответствии с этим, в качестве регистрируемого изображения получают проекции коэффициентов ослабления рентгеновского излучения в результате прохождения через исследуемый объект, т.н. теневые проекции. Поперечные срезы и трехмерное распределение определяются при решении обратной задачи, заключающейся в получении информации о трехмерном распределении поглощения радиационного излучения из набора двухмерных теневых проекций, зафиксированных при вращении объекта вокруг собственной оси с заданным шагом (например, с использованием преобразования Радона).

Данный метод широко применяется в исследованиях осадочных и карбонатных пород нефтяных и газовых коллекторов [8–10]. Исследование данным методом фильтрационно-емкостных свойств пород – коллекторов нефти и газа позволяет строить цифровые модели кернов, хранить их в цифровом виде для дальнейшей обработки и

проведения математических расчетов проницаемости, механических напряжений, капиллярных давлений и электрической проводимости.

Такая работа проведена сотрудниками Института проблем нефти и газа РАН совместно с коллегами из Московского физико-технического института.

Целью исследования являлось определение структуры и параметров порового пространства искусственных образцов керна, имитирующих пористую среду призабойной зоны пласта, методом компьютерной мКТ, а также математическое моделирование течения флюида в породе. В качестве объекта исследования использованы два образца керна – до и после структурирования пористой среды полимером. В качестве метода исследования использован метод рентгеновской компьютерной томографии [11–12].

В ходе лабораторных работ были изучены образцы искусственных кернов:

образец керна 1 – дезинтегрированный кварцевый песок, размер фракции 0,1–0,25 мм;

 образец керна 2 – структурированный полимером кварцевый песок, размер фракции 0,1–0,25 мм.

Работы по определению структуры и параметров порового пространства искусственных образцов керна были выполнены на сканирующем компьютерном рентгеновском микротомографе SkyScan 1272, производства фирмы Bruker (рис. 1).

Рис. 1. Компьютерный микротомограф SkyScan 1272

Полученные в результате проведения микротомографии исходные поперечные срезы образцов в градациях серого (рис. 2) были отфильтрованы цифровым фильтром

Non-Local Means для получения более четкой границы зерен и улучшения качества и точности расчетов. Затем проводилась процедура бинаризации с использованием специализированного ПО, СТ Analyzer. В результате получены черно-белые срезы (рис. 2), в которых белым цветом обозначено поровое пространство, а черным цветом – матрица, в данном случае частицы песчаника.

исхооныи оинаризованный

Рис. 2. Пример изображения поперечных срезов искусственных образцов

Все дальнейшие расчеты параметров порового пространства и проницаемости выполнялись на основе бинарных изображений. Для проведения расчетов были вырезаны 6 небольших объемов с размерами 4х4х4 мм из различных частей исходных образцов. Такие размеры вырезанных объектов обусловлены ограничениями скорости расчетов и требованиями к объему оперативной памяти рабочей станции, на которой проводились расчеты. Все итоговые данные по пористости, проницаемости и распределению пор по размерам являются усредненными по выбранным 6 объемам каждого отдельного образца. Результаты расчета пористости приведены в таблице 1.

Для расчета распределения пор по размерам производится операция по вписыванию в поровый канал сферы, диаметр которой и принимается за размер пор. По результатам строится набор поперечных срезов, распределение размеров пор и гистограмма распределения.

Таблица 1

Номер объема	Пористость, доли ед.		
	Образец 1	Структурированный образец 2	
1	26.68	26.95	
2	26.33	27.35	
3	27.36	27.44	
4	25.57	26.68	
5	24.78	23.72	
6	27.82	23.06	
Среднее по всему образцу	26.42	25.87	

Рассчитанная пористость

На рис. 3 и 4 приведены результаты расчета распределения пор в образцах по размерам. На рис. 5 показан пример визуализации размеров пор в свободно распространяемой программе CTvox [6].

Рис. 3. Гистограмма распределения пор по размерам в образце 1

Рис. 4. Гистограмма распределения пор по размерам в структурированном образце 2

Рис. 5. Пример визуализации карты размеров пор в программе CTvox. Цветом обозначены поры с наибольшим (синий), наименьшим (красный) и промежуточным (зеленый) диаметром

Расчет проницаемости проводился с использованием коммерческого ПО PerGeos. Упрощенная схема расчета представлена на рис. 6. Для инициализации расчета задается давление на входе и выходе, а также вязкость фильтрующегося флюида.

Рис. 6. Упрощенная схема для расчета проницаемости образцов в ПО PerGeos

Результаты расчетов проницаемости исследованных образцов приведены в табл. 2. Трехмерная визуализация поля скоростей фильтрации отражена на рис. 7.

Таблица 2

Номер объема	Проницаемость, Д	
	Образец 1	Структурированный образец 2
1	16.227	16.094
2	13.581	16.942
3	16.692	15.288
4	13.519	13.099
5	12.360	9.404
6	13.809	9.039
Среднее значение	14.365	13.311

Результаты расчета абсолютной проницаемости исследованных образцов

Неструктурированный образец 1 Структурированный образец 2 Рис. 7. Визуализация поля скоростей фильтрации флюида в образцах

На представленном выше рисунке с изображением полей скоростей фильтрации для большей наглядности показана часть порового пространства в центре рассматриваемого объема, по которому происходит течение флюида.

Выводы

• В результате проведенного исследования и вычислений удалось установить, что поровая структура кернов, полученная изменением свойств породы по технологии «ИПНГ-ПЛАСТ 2», сохраняется практически такой же, как и для неструктурированного керна.

• Расчет величины абсолютной проницаемости показывает ее незначительное снижение с 14 Д до 13 Д.

• Визуализация скоростей потоков через рассматриваемые образцы керна показывает сохранение строения поля скоростей для структурированного образца керна.

ЛИТЕРАТУРА

1. Цицорин А.И., Демьяновский В.Б., Каушанский Д.А. Химические методы ограничения выноса песка в нефтяных и газовых скважинах [Электронный ресурс] // Георесурсы, геоэнергетика, геополитика: Электрон. науч. журн. 2014. № 2(10). 8 с. – Режим доступа: http://oilgasjournal.ru (Дата обращения 04.08.2017).

 Румянцева Е.А., Козупица Л.М., Акимов Н.И. Крепление слабосцементированных пород в призабойной зоне скважины химическими методами // Интервал. 2008. № 4. С. 27–31. 3. *Сувернев С.П.* Химическое связывание слабосцементированной породы для борьбы с песком // Инженерная практика. 2011. № 2. С. 101–103.

4. *Якимов С.Б.* Особенности эксплуатации погружных насосов после проведения работ по ограничению выноса песка из призабойной зоны // Оборудование и технологии для нефтегазового комплекса. 2014. № 1. С. 51–55.

5. Демьяновский В.Б., Каушанский Д.А., Дмитриевский А.Н., Цицорин А.И. Пат. RU 2558831 C1. Способ повышения добычи углеводородов путем ограничения выноса песка в нефтяных и газовых скважинах. № 2014120882/03; Заявл. 23.05.2014; Опубл. 10.08.2015 // Изобретения. Полез. модели. Бюл. № 22. – Режим доступа: http://www1.fips.ru

6. Каушанский Д.А., Цицорин А.И., Дмитриевский А.Н., Демьяновский В.Б., Щербаков Д.П. Изучение прочностных и фильтрационных свойств образцов кернов, структурированных уретановым предполимером // Нефтяное хозяйство. 2016. № 3. С. 105–107.

7. Каушанский Д.А., Дмитриевский А.Н., Цицорин А.И., Демьяновский В.Б. Физикохимические и реологические свойства состава «ИПНГ-ПЛАСТ 2» для ограничения выноса механических примесей в нефтяных скважинах // Нефтяное хозяйство. 2015. № 4. С. 84–87.

8. *Taud H*. et al. Porosity Estimation method by X-ray computed tomography // Journal of Petroleum Science and Engineering. 2005. Vol. 47. P. 209–217.

9. Vandersteen K. et al. Quantitative characterization of fracture apertures using microfocus computed tomography // Geological Society: Special Publications. London. 2003. Vol. 215. P. 61–68.

10. Van Geet M., Swennen R., Wevers M. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography // Sedimentary Geology. 2000. Vol. 132. P. 25–36.

11. *Язынина И.В.* и др. Новый подход к исследованиям керна с помощью рентгеновской микротомографии для решения задач петрофизики // Нефтяное хозяйство. 2017. № 1. С. 19–23.

12. Кривощеков С.Н., Кочнев А.А. Опыт применения рентгеновской компьютерной томографии для изучения свойств горных пород // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. 2013. № 6. С. 32–42.